These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22871814)

  • 1. Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin.
    Sommer ME; Hofmann KP; Heck M
    Nat Commun; 2012; 3():995. PubMed ID: 22871814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational selection and equilibrium governs the ability of retinals to bind opsin.
    Schafer CT; Farrens DL
    J Biol Chem; 2015 Feb; 290(7):4304-18. PubMed ID: 25451936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional map of arrestin binding to phosphorylated opsin, with and without agonist.
    Peterhans C; Lally CC; Ostermaier MK; Sommer ME; Standfuss J
    Sci Rep; 2016 Jun; 6():28686. PubMed ID: 27350090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
    Beyrière F; Sommer ME; Szczepek M; Bartl FJ; Hofmann KP; Heck M; Ritter E
    J Biol Chem; 2015 May; 290(20):12919-28. PubMed ID: 25847250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of arrestin-rhodopsin binding stoichiometry.
    Lally CC; Sommer ME
    Methods Mol Biol; 2015; 1271():235-50. PubMed ID: 25697528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.
    Zhuang T; Chen Q; Cho MK; Vishnivetskiy SA; Iverson TM; Gurevich VV; Sanders CR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):942-7. PubMed ID: 23277586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.
    Sommer ME; Hofmann KP; Heck M
    J Biol Chem; 2011 Mar; 286(9):7359-69. PubMed ID: 21169358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations.
    Schafer CT; Shumate A; Farrens DL
    J Biol Chem; 2020 Dec; 295(51):17486-17496. PubMed ID: 33453993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding.
    Sommer ME; Farrens DL; McDowell JH; Weber LA; Smith WC
    J Biol Chem; 2007 Aug; 282(35):25560-8. PubMed ID: 17606620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal.
    Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER
    Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex binding pathways determine the regeneration of mammalian green cone opsin with a locked retinal analogue.
    Alexander NS; Katayama K; Sun W; Salom D; Gulati S; Zhang J; Mogi M; Palczewski K; Jastrzebska B
    J Biol Chem; 2017 Jun; 292(26):10983-10997. PubMed ID: 28487362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The finger loop as an activation sensor in arrestin.
    Vishnivetskiy SA; Huh EK; Gurevich EV; Gurevich VV
    J Neurochem; 2021 May; 157(4):1138-1152. PubMed ID: 33159335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand channeling within a G-protein-coupled receptor. The entry and exit of retinals in native opsin.
    Schädel SA; Heck M; Maretzki D; Filipek S; Teller DC; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jul; 278(27):24896-24903. PubMed ID: 12707280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining the mobility of retinal in activated rhodopsin and opsin.
    Mertz B; Feng J; Corcoran C; Neeley B
    Photochem Photobiol Sci; 2015 Nov; 14(11):1952-64. PubMed ID: 26248892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assays for activation of opsin by all-trans-retinal.
    Sachs K; Maretzki D; Hofmann KP
    Methods Enzymol; 2000; 315():238-51. PubMed ID: 10736706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of arrestin-rhodopsin interactions: arrestin and retinal release are directly linked events.
    Sommer ME; Smith WC; Farrens DL
    J Biol Chem; 2005 Feb; 280(8):6861-71. PubMed ID: 15591052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina.
    Zhu X; Brown B; Li A; Mears AJ; Swaroop A; Craft CM
    J Neurosci; 2003 Jul; 23(14):6152-60. PubMed ID: 12853434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
    Tsukamoto H; Terakita A; Shichida Y
    J Biol Chem; 2010 Mar; 285(10):7351-7. PubMed ID: 20053991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.