These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22871976)
1. First principles study of oxygen adsorption on Se-modified Ru nanoparticles. Zuluaga S; Stolbov S J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976 [TBL] [Abstract][Full Text] [Related]
2. Factors controlling the energetics of the oxygen reduction reaction on the Pd-Co electro-catalysts: insight from first principles. Zuluaga S; Stolbov S J Chem Phys; 2011 Oct; 135(13):134702. PubMed ID: 21992330 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. Zaikovskii VI; Nagabhushana KS; Kriventsov VV; Loponov KN; Cherepanova SV; Kvon RI; Bönnemann H; Kochubey DI; Savinova ER J Phys Chem B; 2006 Apr; 110(13):6881-90. PubMed ID: 16570998 [TBL] [Abstract][Full Text] [Related]
5. Activating Pd by morphology tailoring for oxygen reduction. Xiao L; Zhuang L; Liu Y; Lu J; Abruña HD J Am Chem Soc; 2009 Jan; 131(2):602-8. PubMed ID: 19108685 [TBL] [Abstract][Full Text] [Related]
6. A theoretical study of H(2) dissociation on (sq.rt(3) x sq.rt(3))R30 degrees CO/Ru(0001). Groot IM; Juanes-Marcos JC; Olsen RA; Kroes GJ J Chem Phys; 2010 Apr; 132(14):144704. PubMed ID: 20406007 [TBL] [Abstract][Full Text] [Related]
7. Combinatorial discovery of new methanol-tolerant non-noble metal cathode electrocatalysts for direct methanol fuel cells. Yu JS; Kim MS; Kim JH Phys Chem Chem Phys; 2010 Dec; 12(46):15274-81. PubMed ID: 20953489 [TBL] [Abstract][Full Text] [Related]
8. Graphene substrate-mediated catalytic performance enhancement of Ru nanoparticles: a first-principles study. Liu X; Yao KX; Meng C; Han Y Dalton Trans; 2012 Jan; 41(4):1289-96. PubMed ID: 22134739 [TBL] [Abstract][Full Text] [Related]
10. High CO tolerance of Pt/Ru nanocatalyst: insight from first principles calculations. Stolbov S; Ortigoza MA; Adzic R; Rahman TS J Chem Phys; 2009 Mar; 130(12):124714. PubMed ID: 19334879 [TBL] [Abstract][Full Text] [Related]
11. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017 [TBL] [Abstract][Full Text] [Related]
12. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design. Wei GF; Liu ZP Phys Chem Chem Phys; 2013 Nov; 15(42):18555-61. PubMed ID: 24077215 [TBL] [Abstract][Full Text] [Related]
13. Surface electrochemistry of CO as a probe molecule on carbon-supported Se-surface modified Ru nanoparticles via infrared reflection absorption spectroscopy. Savinova ER; Hahn F; Alonso-Vante N Phys Chem Chem Phys; 2007 Nov; 9(42):5693-9. PubMed ID: 17960258 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Pt clusters with the anatase TiO(2)(101) surface: a first principles study. Han Y; Liu CJ; Ge Q J Phys Chem B; 2006 Apr; 110(14):7463-72. PubMed ID: 16599526 [TBL] [Abstract][Full Text] [Related]
18. Probing the electronic effect of carbon nanotubes in catalysis: NH(3) synthesis with Ru nanoparticles. Guo S; Pan X; Gao H; Yang Z; Zhao J; Bao X Chemistry; 2010 May; 16(18):5379-84. PubMed ID: 20376823 [TBL] [Abstract][Full Text] [Related]