These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 22871976)
21. Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Tang W; Henkelman G J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840 [TBL] [Abstract][Full Text] [Related]
22. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Hansen HA; Rossmeisl J; Nørskov JK Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233 [TBL] [Abstract][Full Text] [Related]
23. A first-principles investigation of the effect of Pt cluster size on CO and NO oxidation intermediates and energetics. Xu Y; Getman RB; Shelton WA; Schneider WF Phys Chem Chem Phys; 2008 Oct; 10(39):6009-18. PubMed ID: 18825289 [TBL] [Abstract][Full Text] [Related]
24. Computational studies of the geometry and electronic structure of an all-inorganic and homogeneous tetra-Ru-polyoxotungstate catalyst for water oxidation and its four subsequent one-electron oxidized forms. Quiñonero D; Kaledin AL; Kuznetsov AE; Geletii YV; Besson C; Hill CL; Musaev DG J Phys Chem A; 2010 Jan; 114(1):535-42. PubMed ID: 19957979 [TBL] [Abstract][Full Text] [Related]
25. First-principles study of Ru atoms and clusters adsorbed outside and inside carbon nanotubes. Gao H; Zhao J J Chem Phys; 2010 Jun; 132(23):234704. PubMed ID: 20572731 [TBL] [Abstract][Full Text] [Related]
26. Carbon-supported, selenium-modified ruthenium-molybdenum catalysts for oxygen reduction in acidic media. Guinel MJ; Bonakdarpour A; Wang B; Babu PK; Ernst F; Ramaswamy N; Mukerjee S; Wieckowski A ChemSusChem; 2009 Jul; 2(7):658-64. PubMed ID: 19554605 [TBL] [Abstract][Full Text] [Related]
27. Influence of stoichiometry and charge state on the structure and reactivity of cobalt oxide clusters with CO. Johnson GE; Reveles JU; Reilly NM; Tyo EC; Khanna SN; Castleman AW J Phys Chem A; 2008 Nov; 112(45):11330-40. PubMed ID: 18855367 [TBL] [Abstract][Full Text] [Related]
28. Synthesis and structural characterization of some selenoruthenates and telluroruthenates. Dibrov SM; Deng B; Ellis DE; Ibers JA Inorg Chem; 2005 May; 44(10):3441-8. PubMed ID: 15877424 [TBL] [Abstract][Full Text] [Related]
29. DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects. Verga LG; Aarons J; Sarwar M; Thompsett D; Russell AE; Skylaris CK Faraday Discuss; 2018 Sep; 208(0):497-522. PubMed ID: 29808835 [TBL] [Abstract][Full Text] [Related]
30. Theoretical study of oxygen adsorption on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for M = Ti, Fe and n = 3-7. Torres MB; Fernández EM; Balbás LC J Phys Chem A; 2008 Jul; 112(29):6678-89. PubMed ID: 18578480 [TBL] [Abstract][Full Text] [Related]
31. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters. Chin YH; Buda C; Neurock M; Iglesia E J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447 [TBL] [Abstract][Full Text] [Related]
32. Application of density functional theory to CO tolerance in fuel cells: a brief review. Stolbov S; Alcantara Ortigoza M; Rahman TS J Phys Condens Matter; 2009 Nov; 21(47):474226. PubMed ID: 21832505 [TBL] [Abstract][Full Text] [Related]
33. Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells. Chen HT; Raghunath P; Lin MC Langmuir; 2011 Jun; 27(11):6787-93. PubMed ID: 21563810 [TBL] [Abstract][Full Text] [Related]
34. Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. Maillard F; Lu GQ; Wieckowski A; Stimming U J Phys Chem B; 2005 Sep; 109(34):16230-43. PubMed ID: 16853064 [TBL] [Abstract][Full Text] [Related]
35. Rational Design of Competitive Electrocatalysts for Hydrogen Fuel Cells. Stolbov S; Alcántara Ortigoza M J Phys Chem Lett; 2012 Feb; 3(4):463-7. PubMed ID: 26286047 [TBL] [Abstract][Full Text] [Related]
36. Adsorption properties of chalcogen atoms on a golden buckyball Au16(-) from first principles. Kang SH; Kim G; Kwon YK J Phys Condens Matter; 2011 Dec; 23(50):505301. PubMed ID: 22126961 [TBL] [Abstract][Full Text] [Related]
37. O- and H-induced surface core level shifts on Ru(0001): prevalence of the additivity rule. Lizzit S; Zhang Y; Kostov KL; Petaccia L; Baraldi A; Menzel D; Reuter K J Phys Condens Matter; 2009 Apr; 21(13):134009. PubMed ID: 21817484 [TBL] [Abstract][Full Text] [Related]
38. The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies. Jin JM; Lin WF; Christensen PA Phys Chem Chem Phys; 2008 Jul; 10(25):3774-83. PubMed ID: 18563238 [TBL] [Abstract][Full Text] [Related]
39. Atomic and molecular adsorption on RhMn alloy surface: a first principles study. Ma X; Deng H; Yang MM; Li WX J Chem Phys; 2008 Dec; 129(24):244711. PubMed ID: 19123530 [TBL] [Abstract][Full Text] [Related]
40. Analysis of O(2) adsorption on binary-alloy clusters of gold: energetics and correlations. Joshi AM; Delgass WN; Thomson KT J Phys Chem B; 2006 Nov; 110(46):23373-87. PubMed ID: 17107188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]