BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22871995)

  • 1. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients.
    de Jonge H; de Loor H; Verbeke K; Vanrenterghem Y; Kuypers DR
    Clin Pharmacol Ther; 2012 Sep; 92(3):366-75. PubMed ID: 22871995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients.
    Santoro AB; Struchiner CJ; Felipe CR; Tedesco-Silva H; Medina-Pestana JO; Suarez-Kurtz G
    Clin Pharmacol Ther; 2013 Aug; 94(2):201-2. PubMed ID: 23588314
    [No Abstract]   [Full Text] [Related]  

  • 4. Response to "CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients".
    de Jonge H; Kuypers DR
    Clin Pharmacol Ther; 2013 Aug; 94(2):202-3. PubMed ID: 23665867
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance.
    Vanhove T; de Jonge H; de Loor H; Annaert P; Diczfalusy U; Kuypers DR
    Br J Clin Pharmacol; 2016 Dec; 82(6):1539-1549. PubMed ID: 27501475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM; Vu A; Page RL; Ambardekar AV; Lindenfeld J; Aquilante CL
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit.
    de Jonge H; Vanhove T; de Loor H; Verbeke K; Kuypers DR
    Br J Clin Pharmacol; 2015 Sep; 80(3):548-59. PubMed ID: 26114223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach.
    Andreu F; Colom H; Elens L; van Gelder T; van Schaik RHN; Hesselink DA; Bestard O; Torras J; Cruzado JM; Grinyó JM; Lloberas N
    Clin Pharmacokinet; 2017 Aug; 56(8):963-975. PubMed ID: 28050888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation.
    Lloberas N; Elens L; Llaudó I; Padullés A; van Gelder T; Hesselink DA; Colom H; Andreu F; Torras J; Bestard O; Cruzado JM; Gil-Vernet S; van Schaik R; Grinyó JM
    Pharmacogenet Genomics; 2017 Sep; 27(9):313-322. PubMed ID: 28704257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients.
    de Jonge H; Elens L; de Loor H; van Schaik RH; Kuypers DR
    Pharmacogenomics J; 2015 Apr; 15(2):144-52. PubMed ID: 25287072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients.
    Kuypers DR; de Jonge H; Naesens M; Lerut E; Verbeke K; Vanrenterghem Y
    Clin Pharmacol Ther; 2007 Dec; 82(6):711-25. PubMed ID: 17495880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients.
    Miura M; Satoh S; Kagaya H; Saito M; Numakura K; Tsuchiya N; Habuchi T
    Pharmacogenomics; 2011 Jul; 12(7):977-84. PubMed ID: 21635144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients.
    Shi Y; Li Y; Tang J; Zhang J; Zou Y; Cai B; Wang L
    Gene; 2013 Jan; 512(2):226-31. PubMed ID: 23107770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Which Genetic Determinants Should be Considered for Tacrolimus Dose Optimization in Kidney Transplantation? A Combined Analysis of Genes Affecting the CYP3A Locus.
    Bruckmueller H; Werk AN; Renders L; Feldkamp T; Tepel M; Borst C; Caliebe A; Kunzendorf U; Cascorbi I
    Ther Drug Monit; 2015 Jun; 37(3):288-95. PubMed ID: 25271728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients.
    Roy JN; Barama A; Poirier C; Vinet B; Roger M
    Pharmacogenet Genomics; 2006 Sep; 16(9):659-65. PubMed ID: 16906020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines.
    Elens L; Capron A; van Schaik RH; De Meyer M; De Pauw L; Eddour DC; Latinne D; Wallemacq P; Mourad M; Haufroid V
    Ther Drug Monit; 2013 Oct; 35(5):608-16. PubMed ID: 24052064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus.
    Hesselink DA; van Schaik RH; van der Heiden IP; van der Werf M; Gregoor PJ; Lindemans J; Weimar W; van Gelder T
    Clin Pharmacol Ther; 2003 Sep; 74(3):245-54. PubMed ID: 12966368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population pharmacokinetics of tacrolimus in adult kidney transplant patients: impact of CYP3A5 genotype on starting dose.
    Bergmann TK; Hennig S; Barraclough KA; Isbel NM; Staatz CE
    Ther Drug Monit; 2014 Feb; 36(1):62-70. PubMed ID: 24089074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients.
    de Jonge H; Metalidis C; Naesens M; Lambrechts D; Kuypers DR
    Pharmacogenomics; 2011 Sep; 12(9):1281-91. PubMed ID: 21770725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients.
    Press RR; Ploeger BA; den Hartigh J; van der Straaten T; van Pelt J; Danhof M; de Fijter JW; Guchelaar HJ
    Ther Drug Monit; 2009 Apr; 31(2):187-97. PubMed ID: 19258929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.