BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22872025)

  • 21. Chemical-template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste-water treatment.
    Wang Y; Wang G; Wang H; Liang C; Cai W; Zhang L
    Chemistry; 2010 Mar; 16(11):3497-503. PubMed ID: 20135651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical composite polyaniline-(electrospun polystyrene) fibers applied to heavy metal remediation.
    Alcaraz-Espinoza JJ; Chávez-Guajardo AE; Medina-Llamas JC; Andrade CA; de Melo CP
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7231-40. PubMed ID: 25761543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitin nanofibrils for rapid and efficient removal of metal ions from water system.
    Liu D; Zhu Y; Li Z; Tian D; Chen L; Chen P
    Carbohydr Polym; 2013 Oct; 98(1):483-9. PubMed ID: 23987372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water.
    Chen LF; Liang HW; Lu Y; Cui CH; Yu SH
    Langmuir; 2011 Jul; 27(14):8998-9004. PubMed ID: 21668024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment.
    Chen X; Cui J; Xu X; Sun B; Zhang L; Dong W; Chen C; Sun D
    Carbohydr Polym; 2020 Feb; 229():115512. PubMed ID: 31826502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions.
    Yuan Q; Li N; Chi Y; Geng W; Yan W; Zhao Y; Li X; Dong B
    J Hazard Mater; 2013 Jun; 254-255():157-165. PubMed ID: 23618656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Throughput Metal Trap: Sulfhydryl-Functionalized Wood Membrane Stacks for Rapid and Highly Efficient Heavy Metal Ion Removal.
    Yang Z; Liu H; Li J; Yang K; Zhang Z; Chen F; Wang B
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15002-15011. PubMed ID: 32149496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal pollution abatement using rock phosphate mineral.
    Saxena S; D'Souza SF
    Environ Int; 2006 Feb; 32(2):199-202. PubMed ID: 16229891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.
    Wei Y; Yang R; Zhang YX; Wang L; Liu JH; Huang XJ
    Chem Commun (Camb); 2011 Oct; 47(39):11062-4. PubMed ID: 21897953
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology.
    Sousa FW; Oliveira AG; Ribeiro JP; Rosa MF; Keukeleire D; Nascimento RF
    J Environ Manage; 2010 Aug; 91(8):1634-40. PubMed ID: 20400223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of toxic heavy metals by iron-coated starfish.
    Yang JK; Yu MR; Lee SM
    Water Sci Technol; 2007; 56(9):51-7. PubMed ID: 18025731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens.
    Singh S; Barick KC; Bahadur D
    J Hazard Mater; 2011 Sep; 192(3):1539-47. PubMed ID: 21784580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alumina nanofibers grafted with functional groups: a new design in efficient sorbents for removal of toxic contaminants from water.
    Yang D; Paul B; Xu W; Yuan Y; Liu E; Ke X; Wellard RM; Guo C; Xu Y; Sun Y; Zhu H
    Water Res; 2010 Feb; 44(3):741-50. PubMed ID: 19889440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4.
    Ren Y; Li N; Feng J; Luan T; Wen Q; Li Z; Zhang M
    J Colloid Interface Sci; 2012 Feb; 367(1):415-21. PubMed ID: 22088764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective extraction of mercury(II) from water samples using mercapto functionalised-MCM-41 and regeneration of the sorbent using microwave digestion.
    Idris SA; Harvey SR; Gibson LT
    J Hazard Mater; 2011 Oct; 193():171-6. PubMed ID: 21813234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of heavy metal ions from wastewaters: a review.
    Fu F; Wang Q
    J Environ Manage; 2011 Mar; 92(3):407-18. PubMed ID: 21138785
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of desorbing agents in electrodialytic remediation of harbour sediment.
    Nystroem GM; Pedersen AJ; Ottosen LM; Villumsen A
    Sci Total Environ; 2006 Mar; 357(1-3):25-37. PubMed ID: 15936059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting long term removal of heavy metals from porous pavements for stormwater treatment.
    Zhang K; Yong F; McCarthy DT; Deletic A
    Water Res; 2018 Oct; 142():236-245. PubMed ID: 29886405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.