These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22872025)

  • 41. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal.
    Yang H; Xu R; Xue X; Li F; Li G
    J Hazard Mater; 2008 Apr; 152(2):690-8. PubMed ID: 17765396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae.
    Zakhama S; Dhaouadi H; M'Henni F
    Bioresour Technol; 2011 Jan; 102(2):786-96. PubMed ID: 20855200
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal ion removal from aqueous solution using physic seed hull.
    Mohammad M; Maitra S; Ahmad N; Bustam A; Sen TK; Dutta BK
    J Hazard Mater; 2010 Jul; 179(1-3):363-72. PubMed ID: 20362390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sorption of heavy metal ions by silica gel-immobilized, proton-ionizable calix[4]arenes.
    Wang J; Zhang D; Lawson TR; Bartsch RA
    Talanta; 2009 Apr; 78(2):477-83. PubMed ID: 19203612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment.
    Jin X; Yu C; Li Y; Qi Y; Yang L; Zhao G; Hu H
    J Hazard Mater; 2011 Feb; 186(2-3):1672-80. PubMed ID: 21237563
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: a porous iron sorbent and its mixtures with zeolite and crystal gravel.
    Wu P; Zhou YS
    J Hazard Mater; 2009 Sep; 168(2-3):674-80. PubMed ID: 19303211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heavy metals binding properties of esterified lemon.
    Arslanoglu H; Altundogan HS; Tumen F
    J Hazard Mater; 2009 May; 164(2-3):1406-13. PubMed ID: 18980807
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Heavy metal complexation on hybrid mesoporous silicas: an approach to analytical applications.
    Sierra I; Pérez-Quintanilla D
    Chem Soc Rev; 2013 May; 42(9):3792-807. PubMed ID: 23097142
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-efficient mercury removal from environmental water samples using di-thio grafted on magnetic mesoporous silica nanoparticles.
    Mehdinia A; Akbari M; Baradaran Kayyal T; Azad M
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):2155-65. PubMed ID: 25172459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic alginate beads for Pb(II) ions removal from wastewater.
    Bée A; Talbot D; Abramson S; Dupuis V
    J Colloid Interface Sci; 2011 Oct; 362(2):486-92. PubMed ID: 21767847
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger.
    Tavakoli O; Goodarzi V; Saeb MR; Mahmoodi NM; Borja R
    J Hazard Mater; 2017 Jul; 334():256-266. PubMed ID: 28419932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heavy metal adsorption by a formulated zeolite-Portland cement mixture.
    Ok YS; Yang JE; Zhang YS; Kim SJ; Chung DY
    J Hazard Mater; 2007 Aug; 147(1-2):91-6. PubMed ID: 17239531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal.
    Duran A; Soylak M; Tuncel SA
    J Hazard Mater; 2008 Jun; 155(1-2):114-20. PubMed ID: 18164127
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of Cu(II) from water by tetrakis(4-carboxyphenyl) porphyrin-functionalized mesoporous silica.
    Jeong EY; Ansari MB; Mo YH; Park SE
    J Hazard Mater; 2011 Jan; 185(2-3):1311-7. PubMed ID: 21055872
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations.
    Kalmykova Y; Strömvall AM; Steenari BM
    J Hazard Mater; 2008 Apr; 152(2):885-91. PubMed ID: 17765394
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods.
    Zhang C; Qiao Q; Piper JD; Huang B
    Environ Pollut; 2011 Oct; 159(10):3057-70. PubMed ID: 21561693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study.
    Merzouk B; Gourich B; Sekki A; Madani K; Chibane M
    J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heavy metal removal from industrial effluents by sorption on cross-linked starch: chemical study and impact on water toxicity.
    Sancey B; Trunfio G; Charles J; Minary JF; Gavoille S; Badot PM; Crini G
    J Environ Manage; 2011 Mar; 92(3):765-72. PubMed ID: 21067859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine.
    Afkhami A; Saber-Tehrani M; Bagheri H
    J Hazard Mater; 2010 Sep; 181(1-3):836-44. PubMed ID: 20542378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of Pb(II), Cd(II) and Co(II) from aqueous solution using Garcinia mangostana L. fruit shell.
    Zein R; Suhaili R; Earnestly F; Indrawati ; Munaf E
    J Hazard Mater; 2010 Sep; 181(1-3):52-6. PubMed ID: 20627410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.