These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22872135)

  • 21. Chromatin Immunoprecipitation for Identification of Protein-DNA Interactions in Human Cells.
    Larsen BD; Madsen MR; Nielsen R; Mandrup S
    Methods Mol Biol; 2018; 1794():335-352. PubMed ID: 29855970
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Vivo ChIP-Seq of Nuclear Receptors: A Rough Guide to Transform Frozen Tissues into High-Confidence Genome-Wide Binding Profiles.
    Mir AA; Dyar KA; Greulich F; Quagliarini F; Jouffe C; Hubert MJ; Hemmer MC; Uhlenhaut NH
    Methods Mol Biol; 2019; 1966():39-70. PubMed ID: 31041738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of chromatin-nuclear receptor interactions by laser-chromatin immunoprecipitation.
    Benedetti R; Conte M; Carafa V; Della Ventura B; Altucci C; Velotta R; Stunnenberg HG; Altucci L; Nebbioso A
    Methods Mol Biol; 2014; 1204():25-34. PubMed ID: 25182758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting transcription factor site occupancy using DNA sequence intrinsic and cell-type specific chromatin features.
    Kumar S; Bucher P
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):4. PubMed ID: 26818008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatin Immunoprecipitation and Quantitative Real-Time PCR to Assess Binding of a Protein of Interest to Identified Predicted Binding Sites Within a Promoter.
    Read JE
    Methods Mol Biol; 2017; 1651():23-32. PubMed ID: 28801897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation.
    Im H; Grass JA; Johnson KD; Boyer ME; Wu J; Bresnick EH
    Methods Mol Biol; 2004; 284():129-46. PubMed ID: 15173613
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Epigenetic Histone Activation/Repression Marks in Sequences of Genes by Chromatin Immunoprecipitation-Quantitative Polymerase Chain Reaction (ChIP-qPCR).
    Bhatia S; Matthews J; Wells PG
    Methods Mol Biol; 2019; 1965():389-403. PubMed ID: 31069688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice.
    Lee J; Seok S; Yu P; Kim K; Smith Z; Rivas-Astroza M; Zhong S; Kemper JK
    Hepatology; 2012 Jul; 56(1):108-17. PubMed ID: 22278336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Use of the Chromatin Immunoprecipitation Technique for In Vivo Identification of Plant Protein-DNA Interactions.
    Jarillo JA; Komar DN; PiƱeiro M
    Methods Mol Biol; 2018; 1794():323-334. PubMed ID: 29855969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear matrix, dynamic histone acetylation and transcriptionally active chromatin.
    Davie JR
    Mol Biol Rep; 1997 Aug; 24(3):197-207. PubMed ID: 9291093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants.
    Chen X; Bhadauria V; Ma B
    Curr Issues Mol Biol; 2018; 27():171-180. PubMed ID: 28885181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induction of KLF2 by fluid shear stress requires a novel promoter element activated by a phosphatidylinositol 3-kinase-dependent chromatin-remodeling pathway.
    Huddleson JP; Ahmad N; Srinivasan S; Lingrel JB
    J Biol Chem; 2005 Jun; 280(24):23371-9. PubMed ID: 15834135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping the genomic binding sites of the activated retinoid X receptor in murine bone marrow-derived macrophages using chromatin immunoprecipitation sequencing.
    Daniel B; Balint BL; Nagy ZS; Nagy L
    Methods Mol Biol; 2014; 1204():15-24. PubMed ID: 25182757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo.
    Pillai S; Dasgupta P; Chellappan SP
    Methods Mol Biol; 2009; 523():323-39. PubMed ID: 19381928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering.
    Ratman D; Vanden Berghe W; Dejager L; Libert C; Tavernier J; Beck IM; De Bosscher K
    Mol Cell Endocrinol; 2013 Nov; 380(1-2):41-54. PubMed ID: 23267834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins.
    Milne TA; Zhao K; Hess JL
    Methods Mol Biol; 2009; 538():409-23. PubMed ID: 19277579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H3K27 acetylation and gene expression analysis reveals differences in placental chromatin activity in fetal growth restriction.
    Paauw ND; Lely AT; Joles JA; Franx A; Nikkels PG; Mokry M; van Rijn BB
    Clin Epigenetics; 2018; 10():85. PubMed ID: 29983832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone Native Chromatin Immunoprecipitation.
    Alonso A; Bernstein E; Hasson D
    Methods Mol Biol; 2018; 1832():77-104. PubMed ID: 30073523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.