These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Coronary hypercontractility to acidosis owes to the greater activity of TMEM16A/ANO1 in the arterial smooth muscle cells. Guo P; Liu Y; Xu X; Ma G; Hou X; Fan Y; Zhang M Biomed Pharmacother; 2021 Jul; 139():111615. PubMed ID: 34243598 [TBL] [Abstract][Full Text] [Related]
7. Intricate interaction between store-operated calcium entry and calcium-activated chloride channels in pulmonary artery smooth muscle cells. Forrest AS; Angermann JE; Raghunathan R; Lachendro C; Greenwood IA; Leblanc N Adv Exp Med Biol; 2010; 661():31-55. PubMed ID: 20204722 [TBL] [Abstract][Full Text] [Related]
11. Swelling-activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hyposmolarity and intravascular pressure. Welsh DG; Nelson MT; Eckman DM; Brayden JE J Physiol; 2000 Aug; 527 Pt 1(Pt 1):139-48. PubMed ID: 10944177 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. Cheranov SY; Jaggar JH J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935 [TBL] [Abstract][Full Text] [Related]
13. Nimodipine inhibits intestinal and aortic smooth muscle contraction by regulating Ca Wang H; Ma D; Zhu X; Liu P; Li S; Yu B; Yang H Toxicol Appl Pharmacol; 2021 Jun; 421():115543. PubMed ID: 33872679 [TBL] [Abstract][Full Text] [Related]
14. The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. Pires PW; Ko EA; Pritchard HAT; Rudokas M; Yamasaki E; Earley S J Physiol; 2017 Jul; 595(14):4735-4753. PubMed ID: 28475214 [TBL] [Abstract][Full Text] [Related]
15. TMEM16A knockdown abrogates two different Ca(2+)-activated Cl (-) currents and contractility of smooth muscle in rat mesenteric small arteries. Dam VS; Boedtkjer DM; Nyvad J; Aalkjaer C; Matchkov V Pflugers Arch; 2014 Jul; 466(7):1391-409. PubMed ID: 24162234 [TBL] [Abstract][Full Text] [Related]
16. Variable Contribution of TMEM16A to Tone in Murine Arterial Vasculature. Jensen AB; Joergensen HB; Dam VS; Kamaev D; Boedtkjer D; Füchtbauer EM; Aalkjaer C; Matchkov VV Basic Clin Pharmacol Toxicol; 2018 Jul; 123(1):30-41. PubMed ID: 29438598 [TBL] [Abstract][Full Text] [Related]
17. Revealing the activation pathway for TMEM16A chloride channels from macroscopic currents and kinetic models. Contreras-Vite JA; Cruz-Rangel S; De Jesús-Pérez JJ; Figueroa IAA; Rodríguez-Menchaca AA; Pérez-Cornejo P; Hartzell HC; Arreola J Pflugers Arch; 2016 Jul; 468(7):1241-1257. PubMed ID: 27138167 [TBL] [Abstract][Full Text] [Related]
18. Role of dual-specificity protein phosphatase-5 in modulating the myogenic response in rat cerebral arteries. Wickramasekera NT; Gebremedhin D; Carver KA; Vakeel P; Ramchandran R; Schuett A; Harder DR J Appl Physiol (1985); 2013 Jan; 114(2):252-61. PubMed ID: 23172031 [TBL] [Abstract][Full Text] [Related]
19. Intravascular pressure enhances the abundance of functional Kv1.5 channels at the surface of arterial smooth muscle cells. Kidd MW; Leo MD; Bannister JP; Jaggar JH Sci Signal; 2015 Aug; 8(390):ra83. PubMed ID: 26286025 [TBL] [Abstract][Full Text] [Related]