BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 22872415)

  • 1. Conformational dynamics of threonine 195 and the S1 subsite in functional trypsin variants.
    Gokey T; Baird TT; Guliaev AB
    J Mol Model; 2012 Nov; 18(11):4941-54. PubMed ID: 22872415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Ser and not Thr brokers catalysis in the trypsin fold.
    Pelc LA; Chen Z; Gohara DW; Vogt AD; Pozzi N; Di Cera E
    Biochemistry; 2015 Feb; 54(7):1457-64. PubMed ID: 25664608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of trypsin to a functional threonine protease.
    Baird TT; Wright WD; Craik CS
    Protein Sci; 2006 Jun; 15(6):1229-38. PubMed ID: 16672242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding protein-ligand interactions: the price of protein flexibility.
    Rauh D; Klebe G; Stubbs MT
    J Mol Biol; 2004 Jan; 335(5):1325-41. PubMed ID: 14729347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural consequences of accommodation of four non-cognate amino acid residues in the S1 pocket of bovine trypsin and chymotrypsin.
    Helland R; Czapinska H; Leiros I; Olufsen M; Otlewski J; Smalås AO
    J Mol Biol; 2003 Oct; 333(4):845-61. PubMed ID: 14568540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology modeling of gelatinase catalytic domains and docking simulations of novel sulfonamide inhibitors.
    Kiyama R; Tamura Y; Watanabe F; Tsuzuki H; Ohtani M; Yodo M
    J Med Chem; 1999 May; 42(10):1723-38. PubMed ID: 10346925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of organic solvents and substrate binding on trypsin in acetonitrile and hexane media.
    Meng Y; Yuan Y; Zhu Y; Guo Y; Li M; Wang Z; Pu X; Jiang L
    J Mol Model; 2013 Sep; 19(9):3749-66. PubMed ID: 23793739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering trypsin for inhibitor resistance.
    Batt AR; St Germain CP; Gokey T; Guliaev AB; Baird T
    Protein Sci; 2015 Sep; 24(9):1463-74. PubMed ID: 26106067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structures of the complexes between bovine beta-trypsin and ten P1 variants of BPTI.
    Helland R; Otlewski J; Sundheim O; Dadlez M; Smalås AO
    J Mol Biol; 1999 Apr; 287(5):923-42. PubMed ID: 10222201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity.
    Sorensen AB; Madsen JJ; Svensson LA; Pedersen AA; Østergaard H; Overgaard MT; Olsen OH; Gandhi PS
    J Biol Chem; 2016 Feb; 291(9):4671-83. PubMed ID: 26694616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration that 1-trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane (E-64) is one of the most effective low Mr inhibitors of trypsin-catalysed hydrolysis. Characterization by kinetic analysis and by energy minimization and molecular dynamics simulation of the E-64-beta-trypsin complex.
    Sreedharan SK; Verma C; Caves LS; Brocklehurst SM; Gharbia SE; Shah HN; Brocklehurst K
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):777-86. PubMed ID: 8670152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis.
    Kayode O; Wang R; Pendlebury DF; Cohen I; Henin RD; Hockla A; Soares AS; Papo N; Caulfield TR; Radisky ES
    J Biol Chem; 2016 Dec; 291(51):26304-26319. PubMed ID: 27810896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of a Michaelis serpin-protease complex.
    Ye S; Cech AL; Belmares R; Bergstrom RC; Tong Y; Corey DR; Kanost MR; Goldsmith EJ
    Nat Struct Biol; 2001 Nov; 8(11):979-83. PubMed ID: 11685246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models.
    Plattner N; Noé F
    Nat Commun; 2015 Jul; 6():7653. PubMed ID: 26134632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic domain structures of MT-SP1/matriptase, a matrix-degrading transmembrane serine proteinase.
    Friedrich R; Fuentes-Prior P; Ong E; Coombs G; Hunter M; Oehler R; Pierson D; Gonzalez R; Huber R; Bode W; Madison EL
    J Biol Chem; 2002 Jan; 277(3):2160-8. PubMed ID: 11696548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MD simulations reveal alternate conformations of the oxyanion hole in the Zika virus NS2B/NS3 protease.
    Ren J; Lee H; Kotak A; Johnson ME
    Proteins; 2020 Feb; 88(2):345-354. PubMed ID: 31461176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of functional motion in trypsin crystal structures.
    Schmidt A; Lamzin VS
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1132-9. PubMed ID: 16041079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities.
    Scheidig AJ; Hynes TR; Pelletier LA; Wells JA; Kossiakoff AA
    Protein Sci; 1997 Sep; 6(9):1806-24. PubMed ID: 9300481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation.
    Cui F; Yang K; Li Y
    PLoS One; 2015; 10(5):e0125848. PubMed ID: 25938485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the S1' subsite of trypsin: design of a protease which cleaves between dibasic residues.
    Kurth T; Grahn S; Thormann M; Ullmann D; Hofmann HJ; Jakubke HD; Hedstrom L
    Biochemistry; 1998 Aug; 37(33):11434-40. PubMed ID: 9708978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.