BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22872635)

  • 1. Replication fork stalling and checkpoint activation by a PKD1 locus mirror repeat polypurine-polypyrimidine (Pu-Py) tract.
    Liu G; Myers S; Chen X; Bissler JJ; Sinden RR; Leffak M
    J Biol Chem; 2012 Sep; 287(40):33412-23. PubMed ID: 22872635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PKD1 intron 21: triplex DNA formation and effect on replication.
    Patel HP; Lu L; Blaszak RT; Bissler JJ
    Nucleic Acids Res; 2004; 32(4):1460-8. PubMed ID: 14990751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RecQ and RecG helicases have distinct roles in maintaining the stability of polypurine.polypyrimidine sequences.
    Dixon BP; Lu L; Chu A; Bissler JJ
    Mutat Res; 2008 Aug; 643(1-2):20-8. PubMed ID: 18582477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication stress at microsatellites causes DNA double-strand breaks and break-induced replication.
    Gadgil RY; Romer EJ; Goodman CC; Rider SD; Damewood FJ; Barthelemy JR; Shin-Ya K; Hanenberg H; Leffak M
    J Biol Chem; 2020 Nov; 295(45):15378-15397. PubMed ID: 32873711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A local ATR-dependent checkpoint pathway is activated by a site-specific replication fork block in human cells.
    Ahmed-Seghir S; Jalan M; Grimsley HE; Sharma A; Twayana S; Kosiyatrakul ST; Thompson C; Schildkraut CL; Powell SN
    Elife; 2023 Aug; 12():. PubMed ID: 37647215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-phase-dependent p50/NF-кB1 phosphorylation in response to ATR and replication stress acts to maintain genomic stability.
    Crawley CD; Kang S; Bernal GM; Wahlstrom JS; Voce DJ; Cahill KE; Garofalo A; Raleigh DR; Weichselbaum RR; Yamini B
    Cell Cycle; 2015; 14(4):566-76. PubMed ID: 25590437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triplex structures induce DNA double strand breaks via replication fork collapse in NER deficient cells.
    Kaushik Tiwari M; Adaku N; Peart N; Rogers FA
    Nucleic Acids Res; 2016 Sep; 44(16):7742-54. PubMed ID: 27298253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The long repetitive polypurine/polypyrimidine sequence (TTCCC)48 forms DNA triplex with PU-PU-PY base triplets in vivo.
    Michel D; Chatelain G; Herault Y; Brun G
    Nucleic Acids Res; 1992 Feb; 20(3):439-43. PubMed ID: 1741277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA structural transitions within the PKD1 gene.
    Blaszak RT; Potaman V; Sinden RR; Bissler JJ
    Nucleic Acids Res; 1999 Jul; 27(13):2610-7. PubMed ID: 10373576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of checkpoint responses triggered by DNA polymerase inhibition versus DNA damaging agents.
    Liu JS; Kuo SR; Melendy T
    Mutat Res; 2003 Nov; 532(1-2):215-26. PubMed ID: 14643438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of intra-S checkpoint protein contributions to DNA replication fork protection and genomic stability in normal human fibroblasts.
    Smith-Roe SL; Patel SS; Zhou Y; Simpson DA; Rao S; Ibrahim JG; Cordeiro-Stone M; Kaufmann WK
    Cell Cycle; 2013 Jan; 12(2):332-45. PubMed ID: 23255133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intramolecular triplex structure from non-mirror repeated sequence containing both Py:Pu.Py and Pu:Pu.Py triads.
    Klysik J
    J Mol Biol; 1995 Feb; 245(5):499-507. PubMed ID: 7844822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide Identification of Structure-Forming Repeats as Principal Sites of Fork Collapse upon ATR Inhibition.
    Shastri N; Tsai YC; Hile S; Jordan D; Powell B; Chen J; Maloney D; Dose M; Lo Y; Anastassiadis T; Rivera O; Kim T; Shah S; Borole P; Asija K; Wang X; Smith KD; Finn D; Schug J; Casellas R; Yatsunyk LA; Eckert KA; Brown EJ
    Mol Cell; 2018 Oct; 72(2):222-238.e11. PubMed ID: 30293786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decarbamoyl mitomycin C (DMC) activates p53-independent ataxia telangiectasia and rad3 related protein (ATR) chromatin eviction.
    Xiao G; Kue P; Bhosle R; Bargonetti J
    Cell Cycle; 2015; 14(5):744-54. PubMed ID: 25565400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation.
    Minca EC; Kowalski D
    Nucleic Acids Res; 2011 Apr; 39(7):2610-23. PubMed ID: 21138968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sticky DNA: effect of the polypurine.polypyrimidine sequence.
    Vetcher AA; Napierala M; Wells RD
    J Biol Chem; 2002 Oct; 277(42):39228-34. PubMed ID: 12161438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Adaptive Mechanisms and Checkpoint Responses to a Stressed DNA Replication Fork.
    Saldanha J; Rageul J; Patel JA; Kim H
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication Through Repetitive DNA Elements and Their Role in Human Diseases.
    Madireddy A; Gerhardt J
    Adv Exp Med Biol; 2017; 1042():549-581. PubMed ID: 29357073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR-Chk1 signaling.
    Lindsey-Boltz LA; Kemp MG; Capp C; Sancar A
    Cell Cycle; 2015; 14(1):99-108. PubMed ID: 25602520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligodeoxynucleotide binding to (CTG) · (CAG) microsatellite repeats inhibits replication fork stalling, hairpin formation, and genome instability.
    Liu G; Chen X; Leffak M
    Mol Cell Biol; 2013 Feb; 33(3):571-81. PubMed ID: 23166299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.