BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 22872774)

  • 1. Plastid proteostasis and heterologous protein accumulation in transplastomic plants.
    De Marchis F; Pompa A; Bellucci M
    Plant Physiol; 2012 Oct; 160(2):571-81. PubMed ID: 22872774
    [No Abstract]   [Full Text] [Related]  

  • 2. Hybrid transcription-mediated transgene regulation in plastids.
    Khan MS
    Trends Biotechnol; 2006 Nov; 24(11):479-82. PubMed ID: 16997406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsolved problems in plastid transformation.
    Rigano MM; Scotti N; Cardi T
    Bioengineered; 2012; 3(6):329-33. PubMed ID: 22892591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Transgenic, transplastomic and transient approaches for foreign gene expression in plants].
    Kuchuk NV
    Tsitol Genet; 2007; 41(3):50-4. PubMed ID: 17649624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution.
    Fleischmann TT; Scharff LB; Alkatib S; Hasdorf S; Schöttler MA; Bock R
    Plant Cell; 2011 Sep; 23(9):3137-55. PubMed ID: 21934145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.
    Tadini L; Pesaresi P; Kleine T; Rossi F; Guljamow A; Sommer F; Mühlhaus T; Schroda M; Masiero S; Pribil M; Rothbart M; Hedtke B; Grimm B; Leister D
    Plant Physiol; 2016 Mar; 170(3):1817-30. PubMed ID: 26823545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Producing human therapeutic proteins in plastids.
    Nugent JM; Joyce SM
    Curr Pharm Des; 2005; 11(19):2459-70. PubMed ID: 16026299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloroplast transformation for engineering of photosynthesis.
    Hanson MR; Gray BN; Ahner BA
    J Exp Bot; 2013 Jan; 64(3):731-42. PubMed ID: 23162121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly.
    Lyska D; Meierhoff K; Westhoff P
    Planta; 2013 Feb; 237(2):413-28. PubMed ID: 22976450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pTAC10, an S1-domain-containing component of the transcriptionally active chromosome complex, is essential for plastid gene expression in Arabidopsis thaliana and is phosphorylated by chloroplast-targeted casein kinase II.
    Yu QB; Zhao TT; Ye LS; Cheng L; Wu YQ; Huang C; Yang ZN
    Photosynth Res; 2018 Jul; 137(1):69-83. PubMed ID: 29330702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phaseolin expression in tobacco chloroplast reveals an autoregulatory mechanism in heterologous protein translation.
    De Marchis F; Bellucci M; Pompa A
    Plant Biotechnol J; 2016 Feb; 14(2):603-14. PubMed ID: 26031839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation from the chloroplast stroma into the thylakoid lumen allows expression of recombinant epidermal growth factor in transplastomic tobacco plants.
    Morgenfeld MM; Vater CF; Alfano EF; Boccardo NA; Bravo-Almonacid FF
    Transgenic Res; 2020 Jun; 29(3):295-305. PubMed ID: 32318934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-harvest light treatment increases expression levels of recombinant proteins in transformed plastids of potato tubers.
    Larraya LM; Fernández-San Millán A; Ancín M; Farran I; Veramendi J
    Biotechnol J; 2015 Sep; 10(11):1803-13. PubMed ID: 26121393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of foreign proteins using plastid transformation.
    Scotti N; Rigano MM; Cardi T
    Biotechnol Adv; 2012; 30(2):387-97. PubMed ID: 21843626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth.
    Kanai M; Hayashi M; Kondo M; Nishimura M
    Plant Cell Physiol; 2013 Sep; 54(9):1431-40. PubMed ID: 23803517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteriophage 5' untranslated regions for control of plastid transgene expression.
    Yang H; Gray BN; Ahner BA; Hanson MR
    Planta; 2013 Feb; 237(2):517-27. PubMed ID: 23053542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development.
    Teubner M; Fuß J; Kühn K; Krause K; Schmitz-Linneweber C
    Plant J; 2017 Feb; 89(3):472-485. PubMed ID: 27743418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of Solanum tuberosum plastids allows high expression levels of β-glucuronidase both in leaves and microtubers developed in vitro.
    Segretin ME; Lentz EM; Wirth SA; Morgenfeld MM; Bravo-Almonacid FF
    Planta; 2012 Apr; 235(4):807-18. PubMed ID: 22071556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic adaptation in transplastomic plants massively accumulating recombinant proteins.
    Bally J; Job C; Belghazi M; Job D
    PLoS One; 2011; 6(9):e25289. PubMed ID: 21966485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of Retrograde Signaling by Rapid Turnover of GENOMES UNCOUPLED1.
    Wu GZ; Chalvin C; Hoelscher M; Meyer EH; Wu XN; Bock R
    Plant Physiol; 2018 Mar; 176(3):2472-2495. PubMed ID: 29367233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.