These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22873406)

  • 1. Core--strategy leading to high reversible hydrogen storage capacity for NaBH4.
    Christian ML; Aguey-Zinsou KF
    ACS Nano; 2012 Sep; 6(9):7739-51. PubMed ID: 22873406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.
    Comănescu C; Capurso G; Maddalena A
    Nanotechnology; 2012 Sep; 23(38):385401. PubMed ID: 22948563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8.
    Wu H; Zhou W; Wang K; Udovic TJ; Rush JJ; Yildirim T; Bendersky LA; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE; Meyer MS
    Nanotechnology; 2009 May; 20(20):204002. PubMed ID: 19420650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel catalytic effects of fullerene for LiBH4 hydrogen uptake and release.
    Wellons MS; Berseth PA; Zidan R
    Nanotechnology; 2009 May; 20(20):204022. PubMed ID: 19420670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host.
    Gross AF; Ahn CC; Van Atta SL; Liu P; Vajo JJ
    Nanotechnology; 2009 May; 20(20):204005. PubMed ID: 19420653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structural characterization and H(2) sorption properties of carbon-supported Mg(1-x)Nix nanocrystallites.
    Bogerd R; Adelhelm P; Meeldijk JH; de Jong KP; de Jongh PE
    Nanotechnology; 2009 May; 20(20):204019. PubMed ID: 19420667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage.
    Kelly ST; Van Atta SL; Vajo JJ; Olson GL; Clemens BM
    Nanotechnology; 2009 May; 20(20):204017. PubMed ID: 19420665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The reaction process of hydrogen absorption and desorption on the nanocomposite of hydrogenated graphite and lithium hydride.
    Miyaoka H; Ichikawa T; Kojima Y
    Nanotechnology; 2009 May; 20(20):204021. PubMed ID: 19420669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The long-term hydriding and dehydriding stability of the nanoscale LiNH2+LiH hydrogen storage system.
    Osborn W; Markmaitree T; Shaw LL
    Nanotechnology; 2009 May; 20(20):204028. PubMed ID: 19420676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen storage in engineered carbon nanospaces.
    Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P
    Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational studies on hydrogen storage in aluminum nitride nanowires/tubes.
    Li Y; Zhou Z; Shen P; Zhang SB; Chen Z
    Nanotechnology; 2009 May; 20(21):215701. PubMed ID: 19423940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties.
    Tylianakis E; Klontzas E; Froudakis GE
    Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis and hydrogen storage properties of a MgH(2) incorporated carbon aerogel scaffold.
    Zhang S; Gross AF; Van Atta SL; Lopez M; Liu P; Ahn CC; Vajo JJ; Jensen CM
    Nanotechnology; 2009 May; 20(20):204027. PubMed ID: 19420675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetic properties of Mg(BH4)2 infiltrated in activated carbon.
    Fichtner M; Zhao-Karger Z; Hu J; Roth A; Weidler P
    Nanotechnology; 2009 May; 20(20):204029. PubMed ID: 19420677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehydriding reaction of AlH3: in situ microscopic observations combined with thermal and surface analyses.
    Ikeda K; Muto S; Tatsumi K; Menjo M; Kato S; Bielmann M; Züttel A; Jensen CM; Orimo S
    Nanotechnology; 2009 May; 20(20):204004. PubMed ID: 19420652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High capacity hydrogen absorption in transition-metal ethylene complexes: consequences of nanoclustering.
    Phillips AB; Shivaram BS
    Nanotechnology; 2009 May; 20(20):204020. PubMed ID: 19420668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.
    Purewal JJ; Kabbour H; Vajo JJ; Ahn CC; Fultz B
    Nanotechnology; 2009 May; 20(20):204012. PubMed ID: 19420660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ammonia adsorption on nanostructured silica materials for hydrogen storage and other applications.
    Roque-Malherbe R; Marquez-Linares F; Del Valle W; Thommes M
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5993-6002. PubMed ID: 19198337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.