These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22873672)

  • 1. Passing to the limit 2D-1D in a model for metastatic growth.
    Benzekry S
    J Biol Dyn; 2012; 6 Suppl 1():19-30. PubMed ID: 22873672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation-based approach to model the size distribution of metastatic tumors.
    Maiti E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):012901. PubMed ID: 22400608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On a mathematical model of tumor growth based on cancer stem cells.
    Tello JI
    Math Biosci Eng; 2013 Feb; 10(1):263-78. PubMed ID: 23311372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling growth kinetics and statistical distribution of oligometastases.
    Withers HR; Lee SP
    Semin Radiat Oncol; 2006 Apr; 16(2):111-9. PubMed ID: 16564446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of the metastatic progression.
    Wedemann G; Bethge A; Haustein V; Schumacher U
    Methods Mol Biol; 2014; 1070():107-16. PubMed ID: 24092435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion.
    Gerisch A; Chaplain MA
    J Theor Biol; 2008 Feb; 250(4):684-704. PubMed ID: 18068728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamical model for the growth and size distribution of multiple metastatic tumors.
    Iwata K; Kawasaki K; Shigesada N
    J Theor Biol; 2000 Mar; 203(2):177-86. PubMed ID: 10704301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic model for cancer metastasis: branching stochastic process with settlement.
    Frei C; Hillen T; Rhodes A
    Math Med Biol; 2020 May; 37(2):153-182. PubMed ID: 31162540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical analysis of an integral equation arising from population dynamics.
    Kay DA; Sagheer M; Tang Q
    Math Biosci; 2007 Dec; 210(2):415-35. PubMed ID: 17707863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quasi two-dimensional model for sound attenuation by the sonic crystals.
    Gupta A; Lim KM; Chew CH
    J Acoust Soc Am; 2012 Oct; 132(4):2909-14. PubMed ID: 23039557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model for describing the metastasis of cancer in bone tissue.
    Garzón-Alvarado DA
    Comput Methods Biomech Biomed Engin; 2012; 15(4):333-46. PubMed ID: 21264782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of a three-dimensional quantum lattice Boltzmann scheme towards solutions of the Dirac equation.
    Lapitski D; Dellar PJ
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2155-63. PubMed ID: 21536561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the anabolic response of bone using a cell population model.
    Buenzli PR; Pivonka P; Gardiner BS; Smith DW
    J Theor Biol; 2012 Aug; 307():42-52. PubMed ID: 22579551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the development of metastases from primary and locally recurrent tumors: comparison with a clinical data base for prostatic cancer.
    Yorke ED; Fuks Z; Norton L; Whitmore W; Ling CC
    Cancer Res; 1993 Jul; 53(13):2987-93. PubMed ID: 8319206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multiscale probabilisitic framework to model early steps in tumor metastasis.
    Zaman MH
    Mol Cell Biomech; 2007 Sep; 4(3):133-41. PubMed ID: 18320900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mathematical analysis and numerical simulation of a model of morphogenesis.
    Muñoz AI; Tello JI
    Math Biosci Eng; 2011 Oct; 8(4):1035-59. PubMed ID: 21936599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Order-of-magnitude estimates of latency (time to appearance) and refill time of a cancer from a single cancer 'stem' cell compared by an exponential and a logistic equation.
    Anderson KM; Rubenstein M; Guinan P; Patel M
    In Vivo; 2012; 26(2):183-9. PubMed ID: 22351656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic model of metastases formation.
    Liotta LA; Saidel GM; Kleinerman J
    Biometrics; 1976 Sep; 32(3):535-50. PubMed ID: 963169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport.
    Pierre J; Oddou C
    Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):429-38. PubMed ID: 17852175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis.
    Ramis-Conde I; Chaplain MA; Anderson AR; Drasdo D
    Phys Biol; 2009 Mar; 6(1):016008. PubMed ID: 19321920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.