BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22873684)

  • 1. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volumetrics of CO2 storage in deep saline formations.
    Steele-MacInnis M; Capobianco RM; Dilmore R; Goodman A; Guthrie G; Rimstidt JD; Bodnar RJ
    Environ Sci Technol; 2013 Jan; 47(1):79-86. PubMed ID: 22916959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ spectrophotometric determination of pH under geologic CO2 sequestration conditions: method development and application.
    Shao H; Thompson CJ; Qafoku O; Cantrell KJ
    Environ Sci Technol; 2013 Jan; 47(1):63-70. PubMed ID: 22708540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace metal source terms in carbon sequestration environments.
    Karamalidis AK; Torres SG; Hakala JA; Shao H; Cantrell KJ; Carroll S
    Environ Sci Technol; 2013 Jan; 47(1):322-9. PubMed ID: 23215015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Study of Cement - Sandstone/Shale - Brine - CO2 Interactions.
    Carroll SA; McNab WW; Torres SC
    Geochem Trans; 2011 Nov; 12(1):9. PubMed ID: 22078161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.
    Sell K; Enzmann F; Kersten M; Spangenberg E
    Environ Sci Technol; 2013 Jan; 47(1):198-204. PubMed ID: 22924476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of CO2-water-rock interactions on geologic CO2 sequestration under geological conditions of China.
    Wang T; Wang H; Zhang F; Xu T
    Mar Pollut Bull; 2013 Nov; 76(1-2):307-14. PubMed ID: 24035426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution and precipitation of clay minerals under geologic CO2 sequestration conditions: CO2-brine-phlogopite interactions.
    Shao H; Ray JR; Jun YS
    Environ Sci Technol; 2010 Aug; 44(15):5999-6005. PubMed ID: 20586472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.
    Kim Y; Wan J; Kneafsey TJ; Tokunaga TK
    Environ Sci Technol; 2012 Apr; 46(7):4228-35. PubMed ID: 22404561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporite caprock integrity: an experimental study of reactive mineralogy and pore-scale heterogeneity during brine-CO2 exposure.
    Smith MM; Sholokhova Y; Hao Y; Carroll SA
    Environ Sci Technol; 2013 Jan; 47(1):262-8. PubMed ID: 22831758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evaluation of wellbore integrity along the cement-rock boundary.
    Newell DL; Carey JW
    Environ Sci Technol; 2013 Jan; 47(1):276-82. PubMed ID: 22663177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ganglion dynamics and its implications to geologic carbon dioxide storage.
    Wang Y; Bryan C; Dewers T; Heath JE; Jove-Colon C
    Environ Sci Technol; 2013 Jan; 47(1):219-26. PubMed ID: 22844874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution potential of SO2 Co-injected with CO2 in geologic sequestration.
    Crandell LE; Ellis BR; Peters CA
    Environ Sci Technol; 2010 Jan; 44(1):349-55. PubMed ID: 20000315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the carbon sequestration capacity of shale formations using methane production rates.
    Tao Z; Clarens A
    Environ Sci Technol; 2013 Oct; 47(19):11318-25. PubMed ID: 23988277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional assessment of CO2-solubility trapping potential: a case study of the coastal and offshore Texas Miocene interval.
    Yang C; TreviƱo RH; Zhang T; Romanak KD; Wallace K; Lu J; Mickler PJ; Hovorka SD
    Environ Sci Technol; 2014 Jul; 48(14):8275-82. PubMed ID: 24956931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Permeability reduction produced by grain reorganization and accumulation of exsolved CO2 during geologic carbon sequestration: a new CO2 trapping mechanism.
    Luhmann AJ; Kong XZ; Tutolo BM; Ding K; Saar MO; Seyfried WE
    Environ Sci Technol; 2013 Jan; 47(1):242-51. PubMed ID: 23140278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration.
    Iglauer S; Mathew MS; Bresme F
    J Colloid Interface Sci; 2012 Nov; 386(1):405-14. PubMed ID: 22921540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.