These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22874426)

  • 21. Identity, expression and functional role of the sodium-activated potassium current in vestibular ganglion afferent neurons.
    Cervantes B; Vega R; Limón A; Soto E
    Neuroscience; 2013 Jun; 240():163-75. PubMed ID: 23466807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional connections between the median and the ventrolateral preoptic nucleus.
    Walter A; van der Spek L; Hardy E; Bemelmans AP; Rouach N; Rancillac A
    Brain Struct Funct; 2019 Dec; 224(9):3045-3057. PubMed ID: 31493023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical membrane properties of trapezoid body neurons in the rat auditory brain stem are preserved in organotypic slice cultures.
    Löhrke S; Kungel M; Friauf E
    J Neurobiol; 1998 Sep; 36(3):395-409. PubMed ID: 9733074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain.
    Uschakov A; Gong H; McGinty D; Szymusiak R
    Neuroscience; 2007 Nov; 150(1):104-20. PubMed ID: 17928156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physiologic regulation of a tetrodotoxin-sensitive sodium influx that mediates a slow afterdepolarization potential in gonadotropin-releasing hormone neurons: possible implications for the central regulation of fertility.
    Chu Z; Moenter SM
    J Neurosci; 2006 Nov; 26(46):11961-73. PubMed ID: 17108170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat.
    Takakusaki K; Kitai ST
    Neuroscience; 1997 Jun; 78(3):771-94. PubMed ID: 9153657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drinking decreases the noradrenaline release in the median preoptic area caused by hypovolemia in the rat.
    Miyakubo H; Yamamoto K; Hatakenaka S; Hayashi Y; Tanaka J
    Behav Brain Res; 2003 Oct; 145(1-2):1-5. PubMed ID: 14529799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GABA receptor mediation of median preoptic nucleus-evoked inhibition of supraoptic neurosecretory neurones in rat.
    Nissen R; Renaud LP
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):207-16. PubMed ID: 7799221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel coupling between TRPC-like and KNa channels modulates low threshold spike-induced afterpotentials in rat thalamic midline neurons.
    Kolaj M; Zhang L; Renaud LP
    Neuropharmacology; 2014 Nov; 86():88-96. PubMed ID: 25014020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The contribution of the median preoptic nucleus to renal sympathetic nerve activity increased by intracerebroventricular injection of hypertonic saline in the rat.
    Yasuda Y; Honda K; Negoro H; Higuchi T; Goto Y; Fukuda S
    Brain Res; 2000 Jun; 867(1-2):107-14. PubMed ID: 10837803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Autoactivity of A5 neurons: role of subthreshold oscillations and persistent Na+ current.
    Huangfu D; Guyenet PG
    Am J Physiol; 1997 Nov; 273(5):H2280-9. PubMed ID: 9374764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GABAergic modulation of noradrenaline release in the median preoptic nucleus area in the rat.
    Sakamaki K; Nomura M; Hatakenaka S; Miyakubo H; Tanaka J
    Neurosci Lett; 2003 May; 342(1-2):77-80. PubMed ID: 12727322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the neurochemical content of neuronal populations of the lamina terminalis activated by acute hydromineral challenge.
    Grob M; Trottier JF; Drolet G; Mouginot D
    Neuroscience; 2003; 122(1):247-57. PubMed ID: 14596865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A sodium afterdepolarization in rat superior colliculus neurons and its contribution to population activity.
    Ghitani N; Bayguinov PO; Basso MA; Jackson MB
    J Neurophysiol; 2016 Jul; 116(1):191-200. PubMed ID: 27075543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus.
    Huang RC
    J Neurophysiol; 1993 Oct; 70(4):1692-703. PubMed ID: 7904302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mode of firing and rectifying properties of nucleus ovoidalis neurons in the avian auditory thalamus.
    Ströhmann B; Schwarz DW; Puil E
    J Neurophysiol; 1994 Apr; 71(4):1351-60. PubMed ID: 8035219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in electrophysiological properties of angiotensinergic pathways from the subfornical organ to the median preoptic nucleus between normotensive Wistar-Kyoto and spontaneously hypertensive rats.
    Tanaka J; Yamamuro Y; Saito H; Matsuda M; Nomura M
    Exp Neurol; 1995 Aug; 134(2):192-8. PubMed ID: 7556538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis.
    McKinley MJ; Yao ST; Uschakov A; McAllen RM; Rundgren M; Martelli D
    Acta Physiol (Oxf); 2015 May; 214(1):8-32. PubMed ID: 25753944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Angiotensinergic pathway through the median preoptic nucleus in the control of oxytocin secretion and water and sodium intake.
    de Lucca Junior W; Franci CR
    Brain Res; 2004 Jul; 1014(1-2):236-43. PubMed ID: 15213008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABAergic modulation of noradrenaline release caused by blood pressure changes in the rat median preoptic area.
    Takahashi M; Tanaka J
    Neuroreport; 2017 Jun; 28(9):485-491. PubMed ID: 28419057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.