These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. [The effects of NOX4 and TGF-βinvolved in airway remodeling of Chronic Obstructive Pulmonary Disease]. Chen J; Cui JD; Guo XT; Liu XY; Zhang H Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2017 Jun; 33(6):481-487. PubMed ID: 29931894 [TBL] [Abstract][Full Text] [Related]
3. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. Kumawat K; Menzen MH; Bos IS; Baarsma HA; Borger P; Roth M; Tamm M; Halayko AJ; Simoons M; Prins A; Postma DS; Schmidt M; Gosens R FASEB J; 2013 Apr; 27(4):1631-43. PubMed ID: 23254341 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor-β-induced differentiation of airway smooth muscle cells is inhibited by fibroblast growth factor-2. Schuliga M; Javeed A; Harris T; Xia Y; Qin C; Wang Z; Zhang X; Lee PV; Camoretti-Mercado B; Stewart AG Am J Respir Cell Mol Biol; 2013 Mar; 48(3):346-53. PubMed ID: 23239497 [TBL] [Abstract][Full Text] [Related]
6. Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins. Halayko AJ; Tran T; Gosens R Proc Am Thorac Soc; 2008 Jan; 5(1):80-8. PubMed ID: 18094089 [TBL] [Abstract][Full Text] [Related]
7. Role of extracellular matrix and its regulators in human airway smooth muscle biology. Parameswaran K; Willems-Widyastuti A; Alagappan VK; Radford K; Kranenburg AR; Sharma HS Cell Biochem Biophys; 2006; 44(1):139-46. PubMed ID: 16456242 [TBL] [Abstract][Full Text] [Related]
8. Platelet-derived growth factor and transforming growth factor-beta modulate the expression of matrix metalloproteinases and migratory function of human airway smooth muscle cells. Ito I; Fixman ED; Asai K; Yoshida M; Gounni AS; Martin JG; Hamid Q Clin Exp Allergy; 2009 Sep; 39(9):1370-80. PubMed ID: 19522858 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms underlying airway smooth muscle contraction and proliferation: implications for asthma. Pelaia G; Renda T; Gallelli L; Vatrella A; Busceti MT; Agati S; Caputi M; Cazzola M; Maselli R; Marsico SA Respir Med; 2008 Aug; 102(8):1173-81. PubMed ID: 18579364 [TBL] [Abstract][Full Text] [Related]
10. Noncontractile functions of airway smooth muscle cells in asthma. Tliba O; Panettieri RA Annu Rev Physiol; 2009; 71():509-35. PubMed ID: 18851708 [TBL] [Abstract][Full Text] [Related]
18. Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro: implications in understanding asthma. Wright D; Sharma P; Ryu MH; Rissé PA; Ngo M; Maarsingh H; Koziol-White C; Jha A; Halayko AJ; West AR Pulm Pharmacol Ther; 2013 Feb; 26(1):24-36. PubMed ID: 22967819 [TBL] [Abstract][Full Text] [Related]
19. Retinoic acid signaling is essential for airway smooth muscle homeostasis. Chen F; Shao F; Hinds A; Yao S; Ram-Mohan S; Norman TA; Krishnan R; Fine A JCI Insight; 2018 Aug; 3(16):. PubMed ID: 30135301 [TBL] [Abstract][Full Text] [Related]
20. Functional phenotype of airway myocytes from asthmatic airways. Wright DB; Trian T; Siddiqui S; Pascoe CD; Ojo OO; Johnson JR; Dekkers BG; Dakshinamurti S; Bagchi R; Burgess JK; Kanabar V Pulm Pharmacol Ther; 2013 Feb; 26(1):95-104. PubMed ID: 22921313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]