These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 22875104)
1. Ser-substituted mutations of Cys residues in Bacillus thuringiensis Vip3Aa7 exert a negative effect on its insecticidal activity. Dong F; Zhang S; Shi R; Yi S; Xu F; Liu Z Curr Microbiol; 2012 Nov; 65(5):583-8. PubMed ID: 22875104 [TBL] [Abstract][Full Text] [Related]
2. Effects of Site-Mutations Within the 22 kDa No-Core Fragment of the Vip3Aa11 Insecticidal Toxin of Bacillus thuringiensis. Liu M; Liu R; Luo G; Li H; Gao J Curr Microbiol; 2017 May; 74(5):655-659. PubMed ID: 28321527 [TBL] [Abstract][Full Text] [Related]
3. Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae. Dong F; Shi R; Zhang S; Zhan T; Wu G; Shen J; Liu Z Appl Microbiol Biotechnol; 2012 Nov; 96(4):921-9. PubMed ID: 22718249 [TBL] [Abstract][Full Text] [Related]
4. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella. Gulzar A; Wright DJ Ecotoxicology; 2015 Nov; 24(9):1815-22. PubMed ID: 26162322 [TBL] [Abstract][Full Text] [Related]
5. [Screening of Bacillus thuringiensis strains containing vip3A genes and analysis of gene conservation]. Chen JW; Tang LX; Song SY; Yuan MJ; Pang Y Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):538-44. PubMed ID: 15969080 [TBL] [Abstract][Full Text] [Related]
6. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae). Lone SA; Yadav R; Malik A; Padaria JC Can J Microbiol; 2016 Feb; 62(2):179-90. PubMed ID: 26751639 [TBL] [Abstract][Full Text] [Related]
7. The conserved cysteine residues in Bacillus thuringiensis Cry1Ac protoxin are not essential for the bipyramidal crystal formation. Li R; Yang S; Qiu X; Lu X; Hu Q; Ren X; Wu B; Qi L; Ding X; Xia L; Sun Y J Invertebr Pathol; 2019 May; 163():82-85. PubMed ID: 30928458 [TBL] [Abstract][Full Text] [Related]
8. Effect of substitutions of key residues on the stability and the insecticidal activity of Vip3Af from Bacillus thuringiensis. Banyuls N; Quan Y; González-Martínez RM; Hernández-Martínez P; Ferré J J Invertebr Pathol; 2021 Nov; 186():107439. PubMed ID: 32663546 [TBL] [Abstract][Full Text] [Related]
9. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Song R; Peng D; Yu Z; Sun M Appl Microbiol Biotechnol; 2008 Sep; 80(4):647-54. PubMed ID: 18685842 [TBL] [Abstract][Full Text] [Related]
10. Structural and Functional Insights into the C-terminal Fragment of Insecticidal Vip3A Toxin of Jiang K; Zhang Y; Chen Z; Wu D; Cai J; Gao X Toxins (Basel); 2020 Jul; 12(7):. PubMed ID: 32635593 [TBL] [Abstract][Full Text] [Related]
11. [Effects of helper protein P20 from Bacillus thuringiensis on Vip3A expression]. Shi YX; Yuan MJ; Chen JW; Sun F; Pang Y Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):85-9. PubMed ID: 16579471 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and characterization of a novel vip3-type gene from Bacillus thuringiensis and evaluation of its toxicity against Helicoverpa armigera. Lone SA; Malik A; Padaria JC Microb Pathog; 2018 Jan; 114():464-469. PubMed ID: 29233779 [TBL] [Abstract][Full Text] [Related]
14. Purification and characterization of Bacillus thuringiensis vegetative insecticidal toxin protein(s). Osman G; Assaeedi A; Osman Y; El-Ghareeb D; Alreedy R Lett Appl Microbiol; 2013 Oct; 57(4):310-6. PubMed ID: 23815791 [TBL] [Abstract][Full Text] [Related]
15. Proteolytic Activation of Bacillus thuringiensis Cry2Ab through a Belt-and-Braces Approach. Xu L; Pan ZZ; Zhang J; Liu B; Zhu YJ; Chen QX J Agric Food Chem; 2016 Sep; 64(38):7195-200. PubMed ID: 27598769 [TBL] [Abstract][Full Text] [Related]
16. The role of β20-β21 loop structure in insecticidal activity of Cry1Ac toxin from Bacillus thuringiensis. Lv Y; Tang Y; Zhang Y; Xia L; Wang F; Ding X; Yi S; Li W; Yin J Curr Microbiol; 2011 Feb; 62(2):665-70. PubMed ID: 20878161 [TBL] [Abstract][Full Text] [Related]
17. Single cysteine substitution in Bacillus thuringiensis Cry7Ba1 improves the crystal solubility and produces toxicity to Plutella xylostella larvae. Peng D; Wang F; Li N; Zhang Z; Song R; Zhu Z; Ruan L; Sun M Environ Microbiol; 2011 Oct; 13(10):2820-31. PubMed ID: 21895913 [TBL] [Abstract][Full Text] [Related]
18. Molecular characterisation of Bacillus thuringiensis strain MEB4 highly toxic to the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Abdelmalek N; Sellami S; Ben Kridis A; Tounsi S; Rouis S Pest Manag Sci; 2016 May; 72(5):913-21. PubMed ID: 26103535 [TBL] [Abstract][Full Text] [Related]
19. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Estruch JJ; Warren GW; Mullins MA; Nye GJ; Craig JA; Koziel MG Proc Natl Acad Sci U S A; 1996 May; 93(11):5389-94. PubMed ID: 8643585 [TBL] [Abstract][Full Text] [Related]
20. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. Thamthiankul Chankhamhaengdecha S; Tantichodok A; Panbangred W J Biotechnol; 2008 Sep; 136(3-4):122-8. PubMed ID: 18602953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]