These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22875866)

  • 21. Sensitivity of human visual cortical areas to the stereoscopic depth of a moving stimulus.
    Smith AT; Wall MB
    J Vis; 2008 Aug; 8(10):1.1-12. PubMed ID: 19146343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decoding pattern motion information in V1.
    van Kemenade BM; Seymour K; Christophel TB; Rothkirch M; Sterzer P
    Cortex; 2014 Aug; 57():177-87. PubMed ID: 24905972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals.
    Matteau I; Kupers R; Ricciardi E; Pietrini P; Ptito M
    Brain Res Bull; 2010 Jul; 82(5-6):264-70. PubMed ID: 20466041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible retinotopy: motion-dependent position coding in the visual cortex.
    Whitney D; Goltz HC; Thomas CG; Gati JS; Menon RS; Goodale MA
    Science; 2003 Oct; 302(5646):878-81. PubMed ID: 14500849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulus complexity modulates contrast response functions in the human middle temporal area (hMT+).
    Garcia JO; Pyles JA; Grossman ED
    Brain Res; 2012 Jul; 1466():56-69. PubMed ID: 22634373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Task-relevant and task-irrelevant dimensions are modulated independently at a task-irrelevant location.
    Lustig AG; Beck DM
    J Cogn Neurosci; 2012 Sep; 24(9):1884-95. PubMed ID: 22624607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Implied motion from form in the human visual cortex.
    Krekelberg B; Vatakis A; Kourtzi Z
    J Neurophysiol; 2005 Dec; 94(6):4373-86. PubMed ID: 16107528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retinotopic encoding of the direction aftereffect.
    Wenderoth P; Wiese M
    Vision Res; 2008 Sep; 48(19):1949-54. PubMed ID: 18621074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orientation-selective adaptation to first- and second-order patterns in human visual cortex.
    Larsson J; Landy MS; Heeger DJ
    J Neurophysiol; 2006 Feb; 95(2):862-81. PubMed ID: 16221748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for distinct levels of neural adaptation to both coherent and incoherently moving visual surfaces in visual area hMT.
    Sousa T; Sayal A; Duarte JV; Costa GN; Martins R; Castelo-Branco M
    Neuroimage; 2018 Oct; 179():540-547. PubMed ID: 29964186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direction-specific adaptation of magnetic responses to motion onset.
    Amano K; Kuriki I; Takeda T
    Vision Res; 2005 Sep; 45(19):2533-48. PubMed ID: 16022878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The physiological basis of attentional modulation in extrastriate visual areas.
    Chawla D; Rees G; Friston KJ
    Nat Neurosci; 1999 Jul; 2(7):671-6. PubMed ID: 10404202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tactile and visual motion direction processing in hMT+/V5.
    van Kemenade BM; Seymour K; Wacker E; Spitzer B; Blankenburg F; Sterzer P
    Neuroimage; 2014 Jan; 84():420-7. PubMed ID: 24036354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct neural correlates of attending speed vs. coherence of motion.
    Kau S; Strumpf H; Merkel C; Stoppel CM; Heinze HJ; Hopf JM; Schoenfeld MA
    Neuroimage; 2013 Jan; 64():299-307. PubMed ID: 22963856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial specificity and inheritance of adaptation in human visual cortex.
    Larsson J; Harrison SJ
    J Neurophysiol; 2015 Aug; 114(2):1211-26. PubMed ID: 26063774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional signalers of changes in visual stimuli: cortical responses to increments and decrements in motion coherence.
    Costagli M; Ueno K; Sun P; Gardner JL; Wan X; Ricciardi E; Pietrini P; Tanaka K; Cheng K
    Cereb Cortex; 2014 Jan; 24(1):110-8. PubMed ID: 23010749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The direct, not V1-mediated, functional influence between the thalamus and middle temporal complex in the human brain is modulated by the speed of visual motion.
    Gaglianese A; Costagli M; Ueno K; Ricciardi E; Bernardi G; Pietrini P; Cheng K
    Neuroscience; 2015 Jan; 284():833-844. PubMed ID: 25450965
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abnormal cortical processing of pattern motion in amblyopia: evidence from fMRI.
    Thompson B; Villeneuve MY; Casanova C; Hess RF
    Neuroimage; 2012 Apr; 60(2):1307-15. PubMed ID: 22285220
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feature-based attention increases the selectivity of population responses in primate visual cortex.
    Martinez-Trujillo JC; Treue S
    Curr Biol; 2004 May; 14(9):744-51. PubMed ID: 15120065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of feature- and space-based attention: response modulation and baseline increases.
    McMains SA; Fehd HM; Emmanouil TA; Kastner S
    J Neurophysiol; 2007 Oct; 98(4):2110-21. PubMed ID: 17671104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.