These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 22875932)

  • 1. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat.
    McVea DA; Mohajerani MH; Murphy TH
    J Neurosci; 2012 Aug; 32(32):10982-94. PubMed ID: 22875932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice.
    Mohajerani MH; McVea DA; Fingas M; Murphy TH
    J Neurosci; 2010 Mar; 30(10):3745-51. PubMed ID: 20220008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spindle Bursts in Neonatal Rat Cerebral Cortex.
    Yang JW; Reyes-Puerta V; Kilb W; Luhmann HJ
    Neural Plast; 2016; 2016():3467832. PubMed ID: 27034844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Scale Cortical Functional Networks Associated with Slow-Wave and Spindle-Burst-Related Spontaneous Activity.
    McVea DA; Murphy TH; Mohajerani MH
    Front Neural Circuits; 2016; 10():103. PubMed ID: 28066190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoscale Mapping of Mouse Cortex Reveals Frequency-Dependent Cycling between Distinct Macroscale Functional Modules.
    Vanni MP; Chan AW; Balbi M; Silasi G; Murphy TH
    J Neurosci; 2017 Aug; 37(31):7513-7533. PubMed ID: 28674167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex.
    An S; Kilb W; Luhmann HJ
    J Neurosci; 2014 Aug; 34(33):10870-83. PubMed ID: 25122889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs.
    Chan AW; Mohajerani MH; LeDue JM; Wang YT; Murphy TH
    Nat Commun; 2015 Jul; 6():7738. PubMed ID: 26190168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo.
    Yang JW; Hanganu-Opatz IL; Sun JJ; Luhmann HJ
    J Neurosci; 2009 Jul; 29(28):9011-25. PubMed ID: 19605639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex.
    Dooley JC; Glanz RM; Sokoloff G; Blumberg MS
    Curr Biol; 2020 Jun; 30(12):2404-2410.e4. PubMed ID: 32413304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal structure of sensory-evoked and spontaneous activity revealed by mesoscale imaging in anesthetized and awake mice.
    Afrashteh N; Inayat S; Bermudez-Contreras E; Luczak A; McNaughton BL; Mohajerani MH
    Cell Rep; 2021 Dec; 37(10):110081. PubMed ID: 34879278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Case of the Disappearing Spindle Burst.
    Tiriac A; Blumberg MS
    Neural Plast; 2016; 2016():8037321. PubMed ID: 27119028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave propagation of cortical population activity under urethane anesthesia is state dependent.
    Wanger T; Takagaki K; Lippert MT; Goldschmidt J; Ohl FW
    BMC Neurosci; 2013 Jul; 14():78. PubMed ID: 23902414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early motor activity drives spindle bursts in the developing somatosensory cortex.
    Khazipov R; Sirota A; Leinekugel X; Holmes GL; Ben-Ari Y; Buzsáki G
    Nature; 2004 Dec; 432(7018):758-61. PubMed ID: 15592414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal brain dynamics in response to muscle stimulation.
    Niddam DM; Chen LF; Wu YT; Hsieh JC
    Neuroimage; 2005 Apr; 25(3):942-51. PubMed ID: 15808994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interhemispheric Synchrony of Spontaneous Cortical States at the Cortical Column Level.
    O'Hashi K; Fekete T; Deneux T; Hildesheim R; van Leeuwen C; Grinvald A
    Cereb Cortex; 2018 May; 28(5):1794-1807. PubMed ID: 28419208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex.
    Akhmetshina D; Nasretdinov A; Zakharov A; Valeeva G; Khazipov R
    J Neurosci; 2016 Sep; 36(38):9922-32. PubMed ID: 27656029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review of imaging network activities in developing rodent cerebral cortex
    Luhmann HJ
    Neurophotonics; 2017 Jul; 4(3):031202. PubMed ID: 27921066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local cortical dynamics of burst suppression in the anaesthetized brain.
    Lewis LD; Ching S; Weiner VS; Peterfreund RA; Eskandar EN; Cash SS; Brown EN; Purdon PL
    Brain; 2013 Sep; 136(Pt 9):2727-37. PubMed ID: 23887187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neocortical activation of the hippocampus during sleep in infant rats.
    Mohns EJ; Blumberg MS
    J Neurosci; 2010 Mar; 30(9):3438-49. PubMed ID: 20203203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear cortical modulation of muscle fatigue: a functional MRI study.
    Liu JZ; Dai TH; Sahgal V; Brown RW; Yue GH
    Brain Res; 2002 Dec; 957(2):320-9. PubMed ID: 12445974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.