BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22875983)

  • 1. Autoinhibition of the formin Cappuccino in the absence of canonical autoinhibitory domains.
    Bor B; Vizcarra CL; Phillips ML; Quinlan ME
    Mol Biol Cell; 2012 Oct; 23(19):3801-13. PubMed ID: 22875983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of formin tails in actin nucleation, processive elongation, and filament bundling.
    Vizcarra CL; Bor B; Quinlan ME
    J Biol Chem; 2014 Oct; 289(44):30602-30613. PubMed ID: 25246531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly.
    Roth-Johnson EA; Vizcarra CL; Bois JS; Quinlan ME
    J Biol Chem; 2014 Feb; 289(7):4395-404. PubMed ID: 24362037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the formin Cappuccino is critical for polarity of Drosophila oocytes.
    Bor B; Bois JS; Quinlan ME
    Cytoskeleton (Hoboken); 2015 Jan; 72(1):1-15. PubMed ID: 25557988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments.
    Montaville P; Kühn S; Compper C; Carlier MF
    J Biol Chem; 2016 Feb; 291(7):3302-18. PubMed ID: 26668326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory interactions between two actin nucleators, Spire and Cappuccino.
    Quinlan ME; Hilgert S; Bedrossian A; Mullins RD; Kerkhoff E
    J Cell Biol; 2007 Oct; 179(1):117-28. PubMed ID: 17923532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of the interacting domains of Spire and Fmn-family formins.
    Vizcarra CL; Kreutz B; Rodal AA; Toms AV; Lu J; Zheng W; Quinlan ME; Eck MJ
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11884-9. PubMed ID: 21730168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of microtubule and microfilament dynamics by Drosophila Rho1, Spire and Cappuccino.
    Rosales-Nieves AE; Johndrow JE; Keller LC; Magie CR; Pinto-Santini DM; Parkhurst SM
    Nat Cell Biol; 2006 Apr; 8(4):367-76. PubMed ID: 16518391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila Spire is an actin nucleation factor.
    Quinlan ME; Heuser JE; Kerkhoff E; Mullins RD
    Nature; 2005 Jan; 433(7024):382-8. PubMed ID: 15674283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capu and Spire assemble a cytoplasmic actin mesh that maintains microtubule organization in the Drosophila oocyte.
    Dahlgaard K; Raposo AA; Niccoli T; St Johnston D
    Dev Cell; 2007 Oct; 13(4):539-53. PubMed ID: 17925229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spire stimulates nucleation by Cappuccino and binds both ends of actin filaments.
    Bradley AO; Vizcarra CL; Bailey HM; Quinlan ME
    Mol Biol Cell; 2020 Feb; 31(4):273-286. PubMed ID: 31877067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures of actin-bound Wiskott-Aldrich syndrome protein homology 2 (WH2) domains of Spire and the implication for filament nucleation.
    Ducka AM; Joel P; Popowicz GM; Trybus KM; Schleicher M; Noegel AA; Huber R; Holak TA; Sitar T
    Proc Natl Acad Sci U S A; 2010 Jun; 107(26):11757-62. PubMed ID: 20538977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the formin-interaction domain of the actin nucleation-promoting factor Bud6.
    Tu D; Graziano BR; Park E; Zheng W; Li Y; Goode BL; Eck MJ
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3424-33. PubMed ID: 23161908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct interaction between two actin nucleators is required in Drosophila oogenesis.
    Quinlan ME
    Development; 2013 Nov; 140(21):4417-25. PubMed ID: 24089467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila Cappuccino alleles provide insight into formin mechanism and role in oogenesis.
    Yoo H; Roth-Johnson EA; Bor B; Quinlan ME
    Mol Biol Cell; 2015 May; 26(10):1875-86. PubMed ID: 25788286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin.
    Bosch M; Le KH; Bugyi B; Correia JJ; Renault L; Carlier MF
    Mol Cell; 2007 Nov; 28(4):555-68. PubMed ID: 18042452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization.
    Chhabra ES; Higgs HN
    J Biol Chem; 2006 Sep; 281(36):26754-67. PubMed ID: 16818491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drosophila homologues of adenomatous polyposis coli (APC) and the formin diaphanous collaborate by a conserved mechanism to stimulate actin filament assembly.
    Jaiswal R; Stepanik V; Rankova A; Molinar O; Goode BL; McCartney BM
    J Biol Chem; 2013 May; 288(19):13897-905. PubMed ID: 23558679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends.
    Heimsath EG; Higgs HN
    J Biol Chem; 2012 Jan; 287(5):3087-98. PubMed ID: 22094460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a short Spir interaction sequence at the C-terminal end of formin subgroup proteins.
    Pechlivanis M; Samol A; Kerkhoff E
    J Biol Chem; 2009 Sep; 284(37):25324-33. PubMed ID: 19605360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.