These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 22876117)

  • 1. Fibrillin-2, tenascin-C, matrilin-2, and matrilin-4 are strongly expressed in the epithelium of human granular and lattice type I corneal dystrophies.
    Szalai E; Felszeghy S; Hegyi Z; Módis L; Berta A; Kaarniranta K
    Mol Vis; 2012; 18():1927-36. PubMed ID: 22876117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of epithelial adhesion molecules and basement membrane components in lattice corneal dystrophy (LCD).
    Resch MD; Schlötzer-Schrehardt U; Hofmann-Rummelt C; Kruse FE; Seitz B
    Graefes Arch Clin Exp Ophthalmol; 2009 Aug; 247(8):1081-8. PubMed ID: 19190930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural morphology and expression of proteoglycans, betaig-h3, tenascin-C, fibrillin-1, and fibronectin in bullous keratopathy.
    Akhtar S; Bron AJ; Hawksworth NR; Bonshek RE; Meek KM
    Br J Ophthalmol; 2001 Jun; 85(6):720-31. PubMed ID: 11371495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granular and lattice deposits in corneal dystrophy caused by R124C mutation of TGFBIp.
    Patel DA; Chang SH; Harocopos GJ; Vora SC; Thang DH; Huang AJ
    Cornea; 2010 Nov; 29(11):1215-22. PubMed ID: 20697279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between granular, lattice type 1, and Avellino corneal dystrophies. A histopathologic study.
    Folberg R; Stone EM; Sheffield VC; Mathers WD
    Arch Ophthalmol; 1994 Aug; 112(8):1080-5. PubMed ID: 8053822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistology of kerato-epithelin in corneal stromal dystrophies associated with R124 mutations of the BIGH3 gene.
    Konishi M; Yamada M; Nakamura Y; Mashima Y
    Curr Eye Res; 2000 Nov; 21(5):891-6. PubMed ID: 11262611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytokeratin expression in corneal dystrophies.
    Coutinho AB; Freitas Dd; Souza Filho JP; Corrêa ZM; Odashiro AN; Burnier MN
    Arq Bras Oftalmol; 2011; 74(2):118-22. PubMed ID: 21779668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clinical and histopathologic examination of accelerated TGFBIp deposition after LASIK in combined granular-lattice corneal dystrophy.
    Aldave AJ; Sonmez B; Forstot SL; Rayner SA; Yellore VS; Glasgow BJ
    Am J Ophthalmol; 2007 Mar; 143(3):416-9. PubMed ID: 17317389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histopathologic study of corneal stromal dystrophies: a 10-year experience.
    Santos LN; Fernandes BF; de Moura LR; Cheema DP; Maloney S; Logan P; Burnier MN
    Cornea; 2007 Oct; 26(9):1027-31. PubMed ID: 17893527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell adhesion molecules in stromal corneal dystrophies.
    Nemeth G; Felszeghy S; Kenyeres A; Szentmary N; Berta A; Suveges I; Modis L
    Histol Histopathol; 2008 Aug; 23(8):945-52. PubMed ID: 18498069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mice lacking the extracellular matrix adaptor protein matrilin-2 develop without obvious abnormalities.
    Mátés L; Nicolae C; Mörgelin M; Deák F; Kiss I; Aszódi A
    Matrix Biol; 2004 Jun; 23(3):195-204. PubMed ID: 15296947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granular-lattice (Avellino) corneal dystrophy.
    Akiya S; Takahashi H; Nakano N; Hirose N; Tokuda Y
    Ophthalmologica; 1999; 213(1):58-62. PubMed ID: 9838259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetrating limbo-keratoplasty for granular and lattice corneal dystrophy: survival of donor limbal stem cells and intermediate-term clinical results.
    Spelsberg H; Reinhard T; Henke L; Berschick P; Sundmacher R
    Ophthalmology; 2004 Aug; 111(8):1528-33. PubMed ID: 15288983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular matrix changes in corneal opacification vary depending on etiology.
    Módis LV; Varkoly G; Bencze J; Hortobágyi TG; Módis L; Hortobágyi T
    Mol Vis; 2021; 27():26-36. PubMed ID: 33633437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of anterior and stromal corneal dystrophies.
    Poulaki V; Colby K
    Semin Ophthalmol; 2008; 23(1):9-17. PubMed ID: 18214787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel variant of combined granular-lattice corneal dystrophy associated with the Met619Lys mutation in the TGFBI gene.
    Aldave AJ; Yellore VS; Sonmez B; Bourla N; Salem AK; Khan MA; Rayner SA; Glasgow BJ
    Arch Ophthalmol; 2008 Mar; 126(3):371-7. PubMed ID: 18332318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lattice corneal dystrophy type 1: an epithelial or stromal entity?
    Lisch W; Seitz B
    Cornea; 2014 Oct; 33(10):1109-12. PubMed ID: 25055147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vimentin and cytokeratin pattern in granular corneal dystrophy.
    Wollensak G; Witschel H
    Graefes Arch Clin Exp Ophthalmol; 1996 Aug; 234 Suppl 1():S110-4. PubMed ID: 8871160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Corneal dystrophies in the light of modern molecular genetic research].
    Auw-Hädrich C; Witschel H
    Ophthalmologe; 2002 Jun; 99(6):418-26. PubMed ID: 12125408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometric analysis of deposits in granular and lattice corneal dystrophy: histopathologic implications for phototherapeutic keratectomy.
    Seitz B; Behrens A; Fischer M; Langenbucher A; Naumann GO
    Cornea; 2004 May; 23(4):380-5. PubMed ID: 15097134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.