These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 22876358)

  • 1. Focal switching of photochromic fluorescent proteins enables multiphoton microscopy with superior image contrast.
    Kao YT; Zhu X; Xu F; Min W
    Biomed Opt Express; 2012 Aug; 3(8):1955-63. PubMed ID: 22876358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores.
    Chen Z; Wei L; Zhu X; Min W
    Opt Express; 2012 Aug; 20(17):18525-36. PubMed ID: 23038491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulated emission reduced fluorescence microscopy: a concept for extending the fundamental depth limit of two-photon fluorescence imaging.
    Wei L; Chen Z; Min W
    Biomed Opt Express; 2012 Jun; 3(6):1465-75. PubMed ID: 22741091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.
    Zhang X; Zhang M; Li D; He W; Peng J; Betzig E; Xu P
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10364-9. PubMed ID: 27562163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging deeper than the transport mean free path with multiphoton microscopy.
    Akbari N; Rebec MR; Xia F; Xu C
    Biomed Opt Express; 2022 Jan; 13(1):452-463. PubMed ID: 35154884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging.
    Centonze VE; White JG
    Biophys J; 1998 Oct; 75(4):2015-24. PubMed ID: 9746543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast.
    Yao J; Shcherbakova DM; Li C; Krumholz A; Lorca RA; Reinl E; England SK; Verkhusha VV; Wang LV
    J Biomed Opt; 2014 Aug; 19(8):086018. PubMed ID: 25144452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Positive Switching Fluorescent Protein Padron2 Enables Live-Cell Reversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) Nanoscopy without Sequential Illumination Steps.
    Konen T; Stumpf D; Grotjohann T; Jansen I; Bossi M; Weber M; Jensen N; Hell SW; Jakobs S
    ACS Nano; 2021 Jun; 15(6):9509-9521. PubMed ID: 34019380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphoton excitation spectra in biological samples.
    Dickinson ME; Simbuerger E; Zimmermann B; Waters CW; Fraser SE
    J Biomed Opt; 2003 Jul; 8(3):329-38. PubMed ID: 12880336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral multiphoton microscopy for
    Bares AJ; Mejooli MA; Pender MA; Leddon SA; Tilley S; Lin K; Dong J; Kim M; Fowell DJ; Nishimura N; Schaffer CB
    Optica; 2020 Nov; 7(11):1587-1601. PubMed ID: 33928182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in nonlinear microscopy: Deep insights and polarized revelations.
    Gopal AA; Kazarine A; Dubach JM; Wiseman PW
    Int J Biochem Cell Biol; 2021 Jan; 130():105896. PubMed ID: 33253831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal focusing-based widefield multiphoton microscopy with spatially modulated illumination for biotissue imaging.
    Chang CY; Lin CH; Lin CY; Sie YD; Hu YY; Tsai SF; Chen SJ
    J Biophotonics; 2018 Jan; 11(1):. PubMed ID: 28464488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanless two-photon excitation with temporal focusing.
    Papagiakoumou E; Ronzitti E; Emiliani V
    Nat Methods; 2020 Jun; 17(6):571-581. PubMed ID: 32284609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of objective lenses for multiphoton microscopy in turbid samples.
    Singh A; McMullen JD; Doris EA; Zipfel WR
    Biomed Opt Express; 2015 Aug; 6(8):3113-27. PubMed ID: 26309771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media.
    Cui L; Knox WH
    J Biomed Opt; 2010; 15(2):026004. PubMed ID: 20459249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Tissue Imaging with Multiphoton Fluorescence Microscopy.
    Miller DR; Jarrett JW; Hassan AM; Dunn AK
    Curr Opin Biomed Eng; 2017 Dec; 4():32-39. PubMed ID: 29335679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frustrated FRET for high-contrast high-resolution two-photon imaging.
    Xu F; Wei L; Chen Z; Min W
    Opt Express; 2013 Jun; 21(12):14097-108. PubMed ID: 23787600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical microscopy in photosynthesis.
    Cisek R; Spencer L; Prent N; Zigmantas D; Espie GS; Barzda V
    Photosynth Res; 2009; 102(2-3):111-41. PubMed ID: 19851883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De-scattering with Excitation Patterning enables rapid wide-field imaging through scattering media.
    Zheng C; Park JK; Yildirim M; Boivin JR; Xue Y; Sur M; So PTC; Wadduwage DN
    Sci Adv; 2021 Jul; 7(28):. PubMed ID: 34233883
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.