These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 22876851)

  • 21. Synthesis of Pt-Ru@PThB catalyst by gamma-irradiation and NaBH(4) as reducing agent.
    Ryu JH; Jung SH; Sim KS; Choi SH
    Appl Radiat Isot; 2009; 67(7-8):1449-53. PubMed ID: 19307126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS.
    Wakisaka M; Mitsui S; Hirose Y; Kawashima K; Uchida H; Watanabe M
    J Phys Chem B; 2006 Nov; 110(46):23489-96. PubMed ID: 17107203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoporous PtRu alloys for electrocatalysis.
    Xu C; Wang L; Mu X; Ding Y
    Langmuir; 2010 May; 26(10):7437-43. PubMed ID: 20112937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt-Ru hybrid catalyst for methanol oxidation.
    Drew K; Girishkumar G; Vinodgopal K; Kamat PV
    J Phys Chem B; 2005 Jun; 109(24):11851-7. PubMed ID: 16852456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational design of CO-tolerant Pt
    Liu Y; Duan Z; Henkelman G
    Phys Chem Chem Phys; 2019 Feb; 21(7):4046-4052. PubMed ID: 30714589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Operando Spectroscopic Study of the Dynamics of Ru Catalyst during Preferential Oxidation of CO and the Prevention of Ammonia Poisoning by Pt.
    Sato K; Zaitsu S; Kitayama G; Yagi S; Kayada Y; Nishida Y; Wada Y; Nagaoka K
    JACS Au; 2022 Jul; 2(7):1627-1637. PubMed ID: 35911446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel method for the synthesis of hydrophobic Pt-Ru nanoparticles and its application to preparing a Nafion-free anode for the direct methanol fuel cell.
    Tu HC; Wang WL; Wan CC; Wang YY
    J Phys Chem B; 2006 Aug; 110(32):15988-93. PubMed ID: 16898755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2.
    Perkas N; Teo J; Shen S; Wang Z; Highfield J; Zhong Z; Gedanken A
    Phys Chem Chem Phys; 2011 Sep; 13(34):15690-8. PubMed ID: 21799973
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Density functional theory study of water activation and COads + OHads reaction on pure platinum and bimetallic platinum/ruthenium nanoclusters.
    Perez A; Vilkas MJ; Cabrera CR; Ishikawa Y
    J Phys Chem B; 2005 Dec; 109(49):23571-8. PubMed ID: 16375333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells.
    Principi E; Witkowska A; Dsoke S; Marassi R; Di Cicco A
    Phys Chem Chem Phys; 2009 Nov; 11(43):9987-95. PubMed ID: 19865750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes.
    Selvaraj V; Vinoba M; Alagar M
    J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bifunctional electrocatalysis in pt-ru nanoparticle systems.
    Roth C; Benker N; Theissmann R; Nichols RJ; Schiffrin DJ
    Langmuir; 2008 Mar; 24(5):2191-9. PubMed ID: 18211103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of Pt-Ru nanoparticles in ethylene glycol solution: an in situ X-ray absorption spectroscopy study.
    Sarma LS; Chen CH; Kumar SM; Wang GR; Yen SC; Liu DG; Sheu HS; Yu KL; Tang MT; Lee JF; Bock C; Chen KH; Hwang BJ
    Langmuir; 2007 May; 23(10):5802-9. PubMed ID: 17425346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles.
    Du B; Rabb SA; Zangmeister C; Tong Y
    Phys Chem Chem Phys; 2009 Oct; 11(37):8231-9. PubMed ID: 19756279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly stable and CO-tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells.
    Wang D; Subban CV; Wang H; Rus E; DiSalvo FJ; Abruña HD
    J Am Chem Soc; 2010 Aug; 132(30):10218-20. PubMed ID: 20662494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Syntheses, characterization, and photo-hydrogen-evolving properties of tris(2,2'-bipyridine)ruthenium(II) derivatives tethered to a cis-Pt(II)Cl2 unit: insights into the structure-activity relationship.
    Ozawa H; Yokoyama Y; Haga MA; Sakai K
    Dalton Trans; 2007 Mar; (12):1197-206. PubMed ID: 17353951
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst.
    Tong Y; Kim HS; Babu PK; Waszczuk P; Wieckowski A; Oldfield E
    J Am Chem Soc; 2002 Jan; 124(3):468-73. PubMed ID: 11792218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.
    Johnston CM; Strbac S; Lewera A; Sibert E; Wieckowski A
    Langmuir; 2006 Sep; 22(19):8229-40. PubMed ID: 16952267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Pt/Ru nanoparticle pair arrays with controlled separation and their electrocatalytic properties.
    Wickman B; Seidel YE; Jusys Z; Kasemo B; Behm RJ
    ACS Nano; 2011 Apr; 5(4):2547-58. PubMed ID: 21443165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.