These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 22876937)
21. Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease. Jin J; Peng Q; Hou Z; Jiang M; Wang X; Langseth AJ; Tao M; Barker PB; Mori S; Bergles DE; Ross CA; Detloff PJ; Zhang J; Duan W Hum Mol Genet; 2015 May; 24(9):2508-27. PubMed ID: 25609071 [TBL] [Abstract][Full Text] [Related]
22. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease. Yhnell E; Dunnett SB; Brooks SP J Huntingtons Dis; 2016 May; 5(2):149-61. PubMed ID: 27258586 [TBL] [Abstract][Full Text] [Related]
23. Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms. Farrar AM; Callahan JW; Abercrombie ED Exp Neurol; 2011 Dec; 232(2):119-25. PubMed ID: 21864528 [TBL] [Abstract][Full Text] [Related]
24. Intranasal Administration of Mesenchymal Stem Cells Ameliorates the Abnormal Dopamine Transmission System and Inflammatory Reaction in the R6/2 Mouse Model of Huntington Disease. Yu-Taeger L; Stricker-Shaver J; Arnold K; Bambynek-Dziuk P; Novati A; Singer E; Lourhmati A; Fabian C; Magg J; Riess O; Schwab M; Stolzing A; Danielyan L; Nguyen HHP Cells; 2019 Jun; 8(6):. PubMed ID: 31208073 [TBL] [Abstract][Full Text] [Related]
25. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats. Menalled LB; Sison JD; Dragatsis I; Zeitlin S; Chesselet MF J Comp Neurol; 2003 Oct; 465(1):11-26. PubMed ID: 12926013 [TBL] [Abstract][Full Text] [Related]
26. Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease. Fisher SP; Black SW; Schwartz MD; Wilk AJ; Chen TM; Lincoln WU; Liu HW; Kilduff TS; Morairty SR Brain; 2013 Jul; 136(Pt 7):2159-72. PubMed ID: 23801738 [TBL] [Abstract][Full Text] [Related]
27. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice. Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326 [TBL] [Abstract][Full Text] [Related]
28. Environmental enrichment rescues protein deficits in a mouse model of Huntington's disease, indicating a possible disease mechanism. Spires TL; Grote HE; Varshney NK; Cordery PM; van Dellen A; Blakemore C; Hannan AJ J Neurosci; 2004 Mar; 24(9):2270-6. PubMed ID: 14999077 [TBL] [Abstract][Full Text] [Related]
29. Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington's disease transgenic mice prior to the onset of motor symptoms. Hebb AL; Robertson HA; Denovan-Wright EM Neuroscience; 2004; 123(4):967-81. PubMed ID: 14751289 [TBL] [Abstract][Full Text] [Related]
30. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice. Zala D; Bensadoun JC; Pereira de Almeida L; Leavitt BR; Gutekunst CA; Aebischer P; Hayden MR; Déglon N Exp Neurol; 2004 Jan; 185(1):26-35. PubMed ID: 14697316 [TBL] [Abstract][Full Text] [Related]
31. Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Labbadia J; Novoselov SS; Bett JS; Weiss A; Paganetti P; Bates GP; Cheetham ME Brain; 2012 Apr; 135(Pt 4):1180-96. PubMed ID: 22396390 [TBL] [Abstract][Full Text] [Related]
32. FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. Precious SV; Kelly CM; Reddington AE; Vinh NN; Stickland RC; Pekarik V; Scherf C; Jeyasingham R; Glasbey J; Holeiter M; Jones L; Taylor MV; Rosser AE Exp Neurol; 2016 Aug; 282():9-18. PubMed ID: 27154297 [TBL] [Abstract][Full Text] [Related]
33. Expression of the Huntington's disease transgene in neural stem cell cultures from R6/2 transgenic mice. Chu-LaGraff Q; Kang X; Messer A Brain Res Bull; 2001 Oct-Nov 1; 56(3-4):307-12. PubMed ID: 11719265 [TBL] [Abstract][Full Text] [Related]
34. Chronology of behavioral symptoms and neuropathological sequela in R6/2 Huntington's disease transgenic mice. Stack EC; Kubilus JK; Smith K; Cormier K; Del Signore SJ; Guelin E; Ryu H; Hersch SM; Ferrante RJ J Comp Neurol; 2005 Oct; 490(4):354-70. PubMed ID: 16127709 [TBL] [Abstract][Full Text] [Related]
35. Evidence of functional brain reorganization on the basis of blood flow changes in the CAG140 knock-in mouse model of Huntington's disease. Wang Z; Stefanko DP; Guo Y; Toy WA; Petzinger GM; Jakowec MW; Holschneider DP Neuroreport; 2016 Jun; 27(9):632-9. PubMed ID: 27082842 [TBL] [Abstract][Full Text] [Related]
36. Preconditioning mesenchymal stem cells with the mood stabilizers lithium and valproic acid enhances therapeutic efficacy in a mouse model of Huntington's disease. Linares GR; Chiu CT; Scheuing L; Leng Y; Liao HM; Maric D; Chuang DM Exp Neurol; 2016 Jul; 281():81-92. PubMed ID: 27085395 [TBL] [Abstract][Full Text] [Related]
37. The cytokine and endocannabinoid systems are co-regulated by NF-κB p65/RelA in cell culture and transgenic mouse models of Huntington's disease and in striatal tissue from Huntington's disease patients. Laprairie RB; Warford JR; Hutchings S; Robertson GS; Kelly ME; Denovan-Wright EM J Neuroimmunol; 2014 Feb; 267(1-2):61-72. PubMed ID: 24360910 [TBL] [Abstract][Full Text] [Related]
38. Striatal oligodendrogliogenesis and neuroblast recruitment are increased in the R6/2 mouse model of Huntington's disease. McCollum MH; Leon RT; Rush DB; Guthrie KM; Wei J Brain Res; 2013 Jun; 1518():91-103. PubMed ID: 23623813 [TBL] [Abstract][Full Text] [Related]
39. Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington's disease. Schiefer J; Landwehrmeyer GB; Lüesse HG; Sprünken A; Puls C; Milkereit A; Milkereit E; Kosinski CM Mov Disord; 2002 Jul; 17(4):748-57. PubMed ID: 12210870 [TBL] [Abstract][Full Text] [Related]
40. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Tong X; Ao Y; Faas GC; Nwaobi SE; Xu J; Haustein MD; Anderson MA; Mody I; Olsen ML; Sofroniew MV; Khakh BS Nat Neurosci; 2014 May; 17(5):694-703. PubMed ID: 24686787 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]