These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22877154)

  • 1. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto.
    Parham PE; Pople D; Christiansen-Jucht C; Lindsay S; Hinsley W; Michael E
    Malar J; 2012 Aug; 11():271. PubMed ID: 22877154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.
    Christiansen-Jucht C; Erguler K; Shek CY; Basáñez MG; Parham PE
    Int J Environ Res Public Health; 2015 May; 12(6):5975-6005. PubMed ID: 26030468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years.
    Mwangangi JM; Mbogo CM; Orindi BO; Muturi EJ; Midega JT; Nzovu J; Gatakaa H; Githure J; Borgemeister C; Keating J; Beier JC
    Malar J; 2013 Jan; 12():13. PubMed ID: 23297732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Bayesian state-space models to understand the population dynamics of the dominant malaria vector, Anopheles funestus in rural Tanzania.
    Ngowo HS; Okumu FO; Hape EE; Mshani IH; Ferguson HM; Matthiopoulos J
    Malar J; 2022 Jun; 21(1):161. PubMed ID: 35658961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effects of weather and climate change on malaria transmission.
    Parham PE; Michael E
    Environ Health Perspect; 2010 May; 118(5):620-6. PubMed ID: 20435552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data.
    Lindsay SW; Parson L; Thomas CJ
    Proc Biol Sci; 1998 May; 265(1399):847-54. PubMed ID: 9633110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the direct and indirect impacts of climate change on malaria in coastal Kenya.
    Le PVV; Kumar P; Ruiz MO; Mbogo C; Muturi EJ
    PLoS One; 2019; 14(2):e0211258. PubMed ID: 30726279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal malaria vector and transmission dynamics in western Burkina Faso.
    Epopa PS; Collins CM; North A; Millogo AA; Benedict MQ; Tripet F; Diabate A
    Malar J; 2019 Apr; 18(1):113. PubMed ID: 30940141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa.
    Tonnang HE; Kangalawe RY; Yanda PZ
    Malar J; 2010 Apr; 9():111. PubMed ID: 20416059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa.
    Yamana TK; Eltahir EA
    Parasit Vectors; 2013 Aug; 6():235. PubMed ID: 23938022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of climate change and malaria transmission dynamics: a historical review.
    Eikenberry SE; Gumel AB
    J Math Biol; 2018 Oct; 77(4):857-933. PubMed ID: 29691632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya.
    Kelly-Hope LA; Hemingway J; McKenzie FE
    Malar J; 2009 Nov; 8():268. PubMed ID: 19941637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics.
    White MT; Griffin JT; Churcher TS; Ferguson NM; Basáñez MG; Ghani AC
    Parasit Vectors; 2011 Jul; 4():153. PubMed ID: 21798055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential distribution of dominant malaria vector species in tropical region under climate change scenarios.
    Akpan GE; Adepoju KA; Oladosu OR
    PLoS One; 2019; 14(6):e0218523. PubMed ID: 31216349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mechanistic approach for accurate simulation of village scale malaria transmission.
    Bomblies A; Duchemin JB; Eltahir EA
    Malar J; 2009 Oct; 8():223. PubMed ID: 19799793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anopheles gambiae and Anopheles arabiensis population densities and infectivity in Kopere village, Western Kenya.
    Obala AA; Kutima HL; Nyamogoba HD; Mwangi AW; Simiyu CJ; Magak GN; Khwa-Otsyula BO; Ouma JH
    J Infect Dev Ctries; 2012 Aug; 6(8):637-43. PubMed ID: 22910571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution niche models of malaria vectors in northern Tanzania: a new capacity to predict malaria risk?
    Kulkarni MA; Desrochers RE; Kerr JT
    PLoS One; 2010 Feb; 5(2):e9396. PubMed ID: 20195366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of Anopheles gambiae population dynamics to meteo-hydrological variability: a mechanistic approach.
    Gilioli G; Mariani L
    Malar J; 2011 Oct; 10():294. PubMed ID: 21985188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017: a systematic review.
    Matiya DJ; Philbert AB; Kidima W; Matowo JJ
    Malar J; 2019 Mar; 18(1):102. PubMed ID: 30914051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya.
    Imbahale SS; Paaijmans KP; Mukabana WR; van Lammeren R; Githeko AK; Takken W
    Malar J; 2011 Apr; 10():81. PubMed ID: 21477340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.