BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 22877656)

  • 21. Beyond irradiance: Visual signals influencing mammalian circadian function.
    Mouland JW; Brown TM
    Prog Brain Res; 2022; 273(1):145-169. PubMed ID: 35940714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
    Fu Y; Zhong H; Wang MH; Luo DG; Liao HW; Maeda H; Hattar S; Frishman LJ; Yau KW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10339-44. PubMed ID: 16014418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin.
    Buhr ED; Van Gelder RN
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8625-30. PubMed ID: 24843129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks.
    Kofuji P; Mure LS; Massman LJ; Purrier N; Panda S; Engeland WC
    PLoS One; 2016; 11(12):e0168651. PubMed ID: 27992553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rods contribute to the light-induced phase shift of the retinal clock in mammals.
    Calligaro H; Coutanson C; Najjar RP; Mazzaro N; Cooper HM; Haddjeri N; Felder-Schmittbuhl MP; Dkhissi-Benyahya O
    PLoS Biol; 2019 Mar; 17(3):e2006211. PubMed ID: 30822304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic light response of retinal horizontal cells of teleosts.
    Cheng N; Tsunenari T; Yau KW
    Nature; 2009 Aug; 460(7257):899-903. PubMed ID: 19633653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synaptic inputs to retinal ganglion cells that set the circadian clock.
    Perez-Leon JA; Warren EJ; Allen CN; Robinson DW; Brown RL
    Eur J Neurosci; 2006 Aug; 24(4):1117-23. PubMed ID: 16930437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-image-forming ocular photoreception in vertebrates.
    Fu Y; Liao HW; Do MT; Yau KW
    Curr Opin Neurobiol; 2005 Aug; 15(4):415-22. PubMed ID: 16023851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina.
    Prigge CL; Yeh PT; Liou NF; Lee CC; You SF; Liu LL; McNeill DS; Chew KS; Hattar S; Chen SK; Zhang DQ
    J Neurosci; 2016 Jul; 36(27):7184-97. PubMed ID: 27383593
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina.
    Tufford AR; Onyak JR; Sondereker KB; Lucas JA; Earley AM; Mattar P; Hattar S; Schmidt TM; Renna JM; Cayouette M
    Cell Rep; 2018 May; 23(8):2416-2428. PubMed ID: 29791852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex.
    McDougal DH; Gamlin PD
    Vision Res; 2010 Jan; 50(1):72-87. PubMed ID: 19850061
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones.
    Procyk CA; Eleftheriou CG; Storchi R; Allen AE; Milosavljevic N; Brown TM; Lucas RJ
    J Neurophysiol; 2015 Aug; 114(2):1321-30. PubMed ID: 26084909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intrinsically photosensitive retinal ganglion cells.
    Pickard GE; Sollars PJ
    Rev Physiol Biochem Pharmacol; 2012; 162():59-90. PubMed ID: 22160822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development of melanopsin-containing retinal ganglion cells in mice with early retinal degeneration.
    Ruggiero L; Allen CN; Brown RL; Robinson DW
    Eur J Neurosci; 2009 Jan; 29(2):359-67. PubMed ID: 19200239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions.
    Schmidt TM; Chen SK; Hattar S
    Trends Neurosci; 2011 Nov; 34(11):572-80. PubMed ID: 21816493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intrinsically photosensitive retinal ganglion cells.
    Do MT; Yau KW
    Physiol Rev; 2010 Oct; 90(4):1547-81. PubMed ID: 20959623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Melanopsin and rod-cone photoreceptors play different roles in mediating pupillary light responses during exposure to continuous light in humans.
    Gooley JJ; Ho Mien I; St Hilaire MA; Yeo SC; Chua EC; van Reen E; Hanley CJ; Hull JT; Czeisler CA; Lockley SW
    J Neurosci; 2012 Oct; 32(41):14242-53. PubMed ID: 23055493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strange vision: ganglion cells as circadian photoreceptors.
    Berson DM
    Trends Neurosci; 2003 Jun; 26(6):314-20. PubMed ID: 12798601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs.
    Drouyer E; Rieux C; Hut RA; Cooper HM
    J Neurosci; 2007 Sep; 27(36):9623-31. PubMed ID: 17804622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of Rod, Cone, and Intrinsically Photosensitive Retinal Ganglion Cell Contributions to the Canine Chromatic Pupillary Response.
    Yeh CY; Koehl KL; Harman CD; Iwabe S; Guzman JM; Petersen-Jones SM; Kardon RH; Komáromy AM
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):65-78. PubMed ID: 28061512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.