These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22877818)

  • 1. Nanomechanical mapping of the osteochondral interface with contact resonance force microscopy and nanoindentation.
    Campbell SE; Ferguson VL; Hurley DC
    Acta Biomater; 2012 Dec; 8(12):4389-96. PubMed ID: 22877818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis.
    Oegema TR; Carpenter RJ; Hofmeister F; Thompson RC
    Microsc Res Tech; 1997 May; 37(4):324-32. PubMed ID: 9185154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional changes of the articular surface in a post-traumatic model of early osteoarthritis measured by atomic force microscopy.
    Desrochers J; Amrein MA; Matyas JR
    J Biomech; 2010 Dec; 43(16):3091-8. PubMed ID: 20817164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoindentation: An advanced procedure to investigate osteochondral engineered tissues.
    Boi M; Marchiori G; Berni M; Gambardella A; Salamanna F; Visani A; Bianchi M; Fini M; Filardo G
    J Mech Behav Biomed Mater; 2019 Aug; 96():79-87. PubMed ID: 31029997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy.
    Tomkoria S; Patel RV; Mao JJ
    Med Eng Phys; 2004 Dec; 26(10):815-22. PubMed ID: 15567698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous bioactive glass matrix in reconstruction of articular osteochondral defects.
    Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT
    Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteochondral alterations in osteoarthritis.
    Suri S; Walsh DA
    Bone; 2012 Aug; 51(2):204-11. PubMed ID: 22023932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic viscoelastic characterisation of human osteochondral tissue: understanding the effect of the cartilage-bone interface.
    Mountcastle SE; Allen P; Mellors BOL; Lawless BM; Cooke ME; Lavecchia CE; Fell NLA; Espino DM; Jones SW; Cox SC
    BMC Musculoskelet Disord; 2019 Nov; 20(1):575. PubMed ID: 31785617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic property mapping with contact resonance force microscopy.
    Killgore JP; Yablon DG; Tsou AH; Gannepalli A; Yuya PA; Turner JA; Proksch R; Hurley DC
    Langmuir; 2011 Dec; 27(23):13983-7. PubMed ID: 22054300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Mechanical behavior of the subchondral bone in the experimentally induced osteoarthritis].
    Miyanaga Y
    Nihon Seikeigeka Gakkai Zasshi; 1979 Jun; 53(6):681-95. PubMed ID: 490015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth.
    Balooch G; Marshall GW; Marshall SJ; Warren OL; Asif SA; Balooch M
    J Biomech; 2004 Aug; 37(8):1223-32. PubMed ID: 15212928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface.
    Gupta HS; Schratter S; Tesch W; Roschger P; Berzlanovich A; Schoeberl T; Klaushofer K; Fratzl P
    J Struct Biol; 2005 Feb; 149(2):138-48. PubMed ID: 15681230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of micron and submicron wear features of diseased human cartilage surfaces.
    Peng Z; Baena JC; Wang M
    Proc Inst Mech Eng H; 2015 Feb; 229(2):164-74. PubMed ID: 25767152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Swelling of articular cartilage depends on the integrity of adjacent cartilage and bone.
    Summers GC; Merrill A; Sharif M; Adams MA
    Biorheology; 2008; 45(3-4):365-74. PubMed ID: 18836237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structural properties of an osteochondral cylinder graft-recipient construct on autologous osteochondral transplantation.
    Nakaji N; Fujioka H; Nagura I; Kokubu T; Makino T; Sakai H; Kuroda R; Doita M; Kurosaka M
    Arthroscopy; 2006 Apr; 22(4):422-7. PubMed ID: 16581455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early osteoarthritis were only detected at the nanometer scale but not at the micrometer or millimeter scale.
    Stolz M
    J Biomech; 2011 Jun; 44(9):1824-5; author reply 1825-6. PubMed ID: 21536292
    [No Abstract]   [Full Text] [Related]  

  • 18. Split-line pattern and histologic analysis of a human osteochondral plug graft.
    Leo BM; Turner MA; Diduch DR
    Arthroscopy; 2004 Jul; 20 Suppl 2():39-45. PubMed ID: 15243423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteochondral autograft transplantation in the porcine knee.
    Harman BD; Weeden SH; Lichota DK; Brindley GW
    Am J Sports Med; 2006 Jun; 34(6):913-8. PubMed ID: 16710049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of optical beam angle on quantitative optical coherence tomography (OCT) in normal and surface degenerated bovine articular cartilage.
    Huang YP; Saarakkala S; Toyras J; Wang LK; Jurvelin JS; Zheng YP
    Phys Med Biol; 2011 Jan; 56(2):491-509. PubMed ID: 21191151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.