These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 22877832)

  • 1. The contribution of load magnitude and number of load cycles to cumulative low-back load estimations: a study based on in-vitro compression data.
    Coenen P; Kingma I; Boot CR; Bongers PM; van Dieën JH
    Clin Biomech (Bristol, Avon); 2012 Dec; 27(10):1083-6. PubMed ID: 22877832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fracture patterns of the adolescent porcine spine: an experimental loading study in bending-compression.
    Baranto A; Ekström L; Hellström M; Lundin O; Holm S; Swärd L
    Spine (Phila Pa 1976); 2005 Jan; 30(1):75-82. PubMed ID: 15626985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining endplate fatigue failure during cyclic compression loading with variable and consistent peak magnitudes using a force weighting adjustment approach: an
    Zehr JD; Tennant LM; Callaghan JP
    Ergonomics; 2019 Oct; 62(10):1339-1348. PubMed ID: 31343393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the torsional stiffness of the lumbar spine in flexion and extension.
    Garges KJ; Nourbakhsh A; Morris R; Yang J; Mody M; Patterson R
    J Manipulative Physiol Ther; 2008 Oct; 31(8):563-9. PubMed ID: 18984238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue failure in shear loading of porcine lumbar spine segments.
    van Dieën JH; van der Veen A; van Royen BJ; Kingma I
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E494-8. PubMed ID: 16816749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on the structural properties of the lumbar endplate: histological structure, the effect of bone density, and spinal level.
    Hou Y; Luo Z
    Spine (Phila Pa 1976); 2009 May; 34(12):E427-33. PubMed ID: 19454994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of instantaneous and cumulative loads on the low back and neck in orthodontists.
    Newell TM; Kumar S
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):130-7. PubMed ID: 15621316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractures of the lumbar vertebral endplate in the etiology of low back pain: a hypothesis on the causative role of spinal compression in aspecific low back pain.
    van Dieën JH; Weinans H; Toussaint HM
    Med Hypotheses; 1999 Sep; 53(3):246-52. PubMed ID: 10580532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk of lumbar spine injury from cyclic compressive loading.
    Schmidt AL; Paskoff G; Shender BS; Bass CR
    Spine (Phila Pa 1976); 2012 Dec; 37(26):E1614-21. PubMed ID: 23023594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lumbar spine disc heights and curvature: upright posture vs. supine compression harness.
    Lee SU; Hargens AR; Fredericson M; Lang PK
    Aviat Space Environ Med; 2003 May; 74(5):512-6. PubMed ID: 12751578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of augmentation techniques on the failure of pedicle screws under cranio-caudal cyclic loading.
    Bostelmann R; Keiler A; Steiger HJ; Scholz A; Cornelius JF; Schmoelz W
    Eur Spine J; 2017 Jan; 26(1):181-188. PubMed ID: 25813011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo.
    Briggs AM; Wrigley TV; van Dieën JH; Phillips B; Lo SK; Greig AM; Bennell KL
    Eur Spine J; 2006 Dec; 15(12):1785-95. PubMed ID: 16819622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating loading variability into in vitro injury analyses and its effect on cumulative compression tolerance in porcine cervical spine units.
    Zehr JD; Tennant LM; Callaghan JP
    J Biomech; 2019 May; 88():48-54. PubMed ID: 30904332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of fatigue failure responses of old versus middle-aged lumbar motion segments in simulated flexed lifting.
    Gallagher S; Marras WS; Litsky AS; Burr D; Landoll J; Matkovic V
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1832-9. PubMed ID: 17762290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjacent level load transfer following vertebral augmentation in the cadaveric spine.
    Kayanja MM; Evans K; Milks R; Lieberman IH
    Spine (Phila Pa 1976); 2006 Oct; 31(21):E790-7. PubMed ID: 17023840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative strength of thoracic vertebrae in axial compression versus flexion.
    Buckley JM; Kuo CC; Cheng LC; Loo K; Motherway J; Slyfield C; Deviren V; Ames C
    Spine J; 2009 Jun; 9(6):478-85. PubMed ID: 19364678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of dynamic flexion in spine injury is altered by increasing dynamic load magnitude.
    Parkinson RJ; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):148-54. PubMed ID: 19121880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.