These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22878081)

  • 1. Development of a microcantilever-based immunosensing method for mycotoxin detection.
    Ricciardi C; Castagna R; Ferrante I; Frascella F; Marasso SL; Ricci A; Canavese G; Lorè A; Prelle A; Gullino ML; Spadaro D
    Biosens Bioelectron; 2013 Feb; 40(1):233-9. PubMed ID: 22878081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunodetection of 17β-estradiol in serum at ppt level by microcantilever resonators.
    Ricciardi C; Ferrante I; Castagna R; Frascella F; Marasso SL; Santoro K; Gili M; Pitardi D; Pezzolato M; Bozzetta E
    Biosens Bioelectron; 2013 Feb; 40(1):407-11. PubMed ID: 22964384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensors based on cantilevers.
    Alvarez M; Carrascosa LG; Zinoviev K; Plaza JA; Lechuga LM
    Methods Mol Biol; 2009; 504():51-71. PubMed ID: 19159090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric quartz crystal resonators applied for immunosensing and affinity interaction studies.
    Skládal P
    Methods Mol Biol; 2009; 504():37-50. PubMed ID: 19159089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis.
    Ricciardi C; Fiorilli S; Bianco S; Canavese G; Castagna R; Ferrante I; Digregorio G; Marasso SL; Napione L; Bussolino F
    Biosens Bioelectron; 2010 Jan; 25(5):1193-8. PubMed ID: 19892542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A.
    Adányi N; Levkovets IA; Rodriguez-Gil S; Ronald A; Váradi M; Szendro I
    Biosens Bioelectron; 2007 Jan; 22(6):797-802. PubMed ID: 16600588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A.
    Radi AE; Muñoz-Berbel X; Lates V; Marty JL
    Biosens Bioelectron; 2009 Mar; 24(7):1888-92. PubMed ID: 19013783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1.
    Jin X; Jin X; Chen L; Jiang J; Shen G; Yu R
    Biosens Bioelectron; 2009 Apr; 24(8):2580-5. PubMed ID: 19237278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide binding to ochratoxin A mycotoxin: a new approach in conception of biosensors.
    Bazin I; Andreotti N; Hassine AI; De Waard M; Sabatier JM; Gonzalez C
    Biosens Bioelectron; 2013 Feb; 40(1):240-6. PubMed ID: 22884651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive detection of ochratoxin A in wine and cereals using fluorescence-based immunosensing.
    Prieto-Simón B; Karube I; Saiki H
    Food Chem; 2012 Dec; 135(3):1323-9. PubMed ID: 22953861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a potentiometric and a micromechanical triglyceride biosensor.
    Fernandez RE; Hareesh V; Bhattacharya E; Chadha A
    Biosens Bioelectron; 2009 Jan; 24(5):1276-80. PubMed ID: 18804368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels.
    Wu S; Duan N; Zhu C; Ma X; Wang M; Wang Z
    Biosens Bioelectron; 2011 Dec; 30(1):35-42. PubMed ID: 21930370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitive enzyme-biosensor based on screen-printed electrodes for Ochratoxin A.
    Alonso-Lomillo MA; Domínguez-Renedo O; Ferreira-Gonçalves L; Arcos-Martínez MJ
    Biosens Bioelectron; 2010 Feb; 25(6):1333-7. PubMed ID: 19914816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Piezoelectric-excited millimeter-sized cantilever biosensors.
    Mutharasan R
    Methods Mol Biol; 2009; 504():73-82. PubMed ID: 19159091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of suspension array for simultaneous detection of four different mycotoxins in corn and peanut.
    Wang Y; Ning B; Peng Y; Bai J; Liu M; Fan X; Sun Z; Lv Z; Zhou C; Gao Z
    Biosens Bioelectron; 2013 Mar; 41():391-6. PubMed ID: 23017676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Array biosensor for detection of ochratoxin A in cereals and beverages.
    Ngundi MM; Shriver-Lake LC; Moore MH; Lassman ME; Ligler FS; Taitt CR
    Anal Chem; 2005 Jan; 77(1):148-54. PubMed ID: 15623290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive multi-immunosensing of pesticides based on the particle manipulation with negative dielectrophoresis.
    Ramón-Azcón J; Yasukawa T; Lee HJ; Matsue T; Sánchez-Baeza F; Marco MP; Mizutani F
    Biosens Bioelectron; 2010 Apr; 25(8):1928-33. PubMed ID: 20129771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic wave immunosensing of a meningococcal antigen using gold nanoparticle-enhanced mass sensitivity.
    Reddy SB; Mainwaring DE; Kobaisi MA; Zeephongsekul P; Fecondo JV
    Biosens Bioelectron; 2012 Jan; 31(1):382-7. PubMed ID: 22104649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac troponin T detection using polymers coated quartz crystal microbalance as a cost-effective immunosensor.
    Wong-ek K; Chailapakul O; Nuntawong N; Jaruwongrungsee K; Tuantranont A
    Biomed Tech (Berl); 2010 Oct; 55(5):279-84. PubMed ID: 20840005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current development of microfluidic immunosensing approaches for mycotoxin detection via capillary electromigration and lateral flow technology.
    Li P; Zhang Z; Zhang Q; Zhang N; Zhang W; Ding X; Li R
    Electrophoresis; 2012 Aug; 33(15):2253-65. PubMed ID: 22887149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.