BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 22878180)

  • 1. Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars.
    Sobahan MA; Akter N; Ohno M; Okuma E; Hirai Y; Mori IC; Nakamura Y; Murata Y
    Biosci Biotechnol Biochem; 2012; 76(8):1568-70. PubMed ID: 22878180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na(+) uptake in rice seedlings.
    Sobahan MA; Arias CR; Okuma E; Shimoishi Y; Nakamura Y; Hirai Y; Mori IC; Murata Y
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2037-42. PubMed ID: 19734659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI.
    Kader MA; Lindberg S
    J Exp Bot; 2005 Dec; 56(422):3149-58. PubMed ID: 16275670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial repair of salinity-induced damage to sprouting sugarcane buds by proline and glycinebetaine pretreatment.
    Rasheed R; Wahid A; Hussain I; Mahmood S; Parveen A
    Protoplasma; 2016 May; 253(3):803-813. PubMed ID: 26043840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rice cultivars with differing salt tolerance contain similar cation channels in their root cells.
    Kavitha PG; Miller AJ; Mathew MK; Maathuis FJ
    J Exp Bot; 2012 May; 63(8):3289-96. PubMed ID: 22345644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycine betaine counters salinity stress by maintaining high K
    Sofy MR; Elhawat N; Tarek Alshaal
    Ecotoxicol Environ Saf; 2020 Sep; 200():110732. PubMed ID: 32460049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance.
    Quinet M; Ndayiragije A; Lefèvre I; Lambillotte B; Dupont-Gillain CC; Lutts S
    J Exp Bot; 2010 Jun; 61(10):2719-33. PubMed ID: 20472577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf cell membrane stability-based mechanisms of zinc nutrition in mitigating salinity stress in rice.
    Tufail A; Li H; Naeem A; Li TX
    Plant Biol (Stuttg); 2018 Mar; 20(2):338-345. PubMed ID: 29148143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.).
    Faiyue B; Vijayalakshmi C; Nawaz S; Nagato Y; Taketa S; Ichii M; Al-Azzawi MJ; Flowers TJ
    Plant Cell Environ; 2010 May; 33(5):687-701. PubMed ID: 19930131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na+/K+ selectivity of leaf sheath in wheat cultivars differing in salt tolerance.
    Ding TL; Duan P; Wang BS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Feb; 32(1):123-6. PubMed ID: 16477141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells.
    Horie T; Sugawara M; Okada T; Taira K; Kaothien-Nakayama P; Katsuhara M; Shinmyo A; Nakayama H
    J Biosci Bioeng; 2011 Mar; 111(3):346-56. PubMed ID: 21084222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars.
    Kader MA; Seidel T; Golldack D; Lindberg S
    J Exp Bot; 2006; 57(15):4257-68. PubMed ID: 17088362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HKT2;2/1, a K⁺-permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism.
    Oomen RJ; Benito B; Sentenac H; Rodríguez-Navarro A; Talón M; Véry AA; Domingo C
    Plant J; 2012 Sep; 71(5):750-62. PubMed ID: 22530609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt-induced modulation in inorganic nutrients, antioxidant enzymes, proline content and seed oil composition in safflower (Carthamus tinctorius L.).
    Siddiqi EH; Ashraf M; Al-Qurainy F; Akram NA
    J Sci Food Agric; 2011 Dec; 91(15):2785-93. PubMed ID: 21717466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Accumulation of Proline Enhances Salinity Tolerance in Australian Wild Rice
    Nguyen HTT; Das Bhowmik S; Long H; Cheng Y; Mundree S; Hoang LTM
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells.
    Obata T; Kitamoto HK; Nakamura A; Fukuda A; Tanaka Y
    Plant Physiol; 2007 Aug; 144(4):1978-85. PubMed ID: 17586689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.
    Chen H; He H; Yu D
    Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow.
    Gong HJ; Randall DP; Flowers TJ
    Plant Cell Environ; 2006 Oct; 29(10):1970-9. PubMed ID: 16930322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance.
    Chen Z; Cuin TA; Zhou M; Twomey A; Naidu BP; Shabala S
    J Exp Bot; 2007; 58(15-16):4245-55. PubMed ID: 18182428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel.
    Baisakh N; RamanaRao MV; Rajasekaran K; Subudhi P; Janda J; Galbraith D; Vanier C; Pereira A
    Plant Biotechnol J; 2012 May; 10(4):453-64. PubMed ID: 22284568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.