These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22878217)

  • 21. Understanding tsetse flies.
    Langley PA
    Onderstepoort J Vet Res; 1994 Dec; 61(4):361-7. PubMed ID: 7501367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Molecular Method to Discriminate between Mass-Reared Sterile and Wild Tsetse Flies during Eradication Programmes That Have a Sterile Insect Technique Component.
    Pagabeleguem S; Gimonneau G; Seck MT; Vreysen MJ; Sall B; Rayaissé JB; Sidibé I; Bouyer J; Ravel S
    PLoS Negl Trop Dis; 2016 Feb; 10(2):e0004491. PubMed ID: 26901049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal.
    Dicko AH; Lancelot R; Seck MT; Guerrini L; Sall B; Lo M; Vreysen MJ; Lefrançois T; Fonta WM; Peck SL; Bouyer J
    Proc Natl Acad Sci U S A; 2014 Jul; 111(28):10149-54. PubMed ID: 24982143
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applying GIS and population genetics for managing livestock insect pests: case studies of tsetse and screwworm flies.
    Feldmann U; Ready PD
    Acta Trop; 2014 Oct; 138 Suppl():S1-5. PubMed ID: 24713196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal strategies for controlling riverine tsetse flies using targets: a modelling study.
    Vale GA; Hargrove JW; Lehane MJ; Solano P; Torr SJ
    PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003615. PubMed ID: 25803871
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mathematical Modelling of Human African Trypanosomiasis Using Control Measures.
    Gervas HE; Opoku NKO; Ibrahim S
    Comput Math Methods Med; 2018; 2018():5293568. PubMed ID: 30595713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing the feeding frequency to maximize the production of sterile males in tsetse mass-rearing colonies.
    Pagabeleguem S; Toé AI; Pooda SH; Dera KM; Belem AS; Belem AMG; Ouedraogo/Sanou GMS; Ira M; Kaboré BA; Percoma L; Sidibé I
    PLoS One; 2021; 16(1):e0245503. PubMed ID: 33444421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of human African trypanosomiasis: trap and odour preference of tsetse flies (Glossina morsitans submorsitans) in the upper Didessa river valley of Ethiopia.
    Belete H; Tikubet G; Petros B; Oyibo WA; Otigbuo IN
    Trop Med Int Health; 2004 Jun; 9(6):710-4. PubMed ID: 15189461
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of tsetse challenge and its relationship with trypanosomosis incidence in cattle kept under pastoral production systems in Kenya.
    Bett B; Irungu P; Nyamwaro SO; Murilla G; Kitala P; Gathuma J; Randolph TF; McDermott J
    Vet Parasitol; 2008 Aug; 155(3-4):287-98. PubMed ID: 18602218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aiming to eliminate tsetse from Africa.
    Kabayo JP
    Trends Parasitol; 2002 Nov; 18(11):473-5. PubMed ID: 12473355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sleeping sickness and tsetse awareness: a sociological study among the Tambo and Lambya of the northern Luangwa Valley, Zambia.
    Kaona FA; Masaninga F; Rickman LR; Mukunyandela M
    Cent Afr J Med; 1991 Sep; 37(9):298-301. PubMed ID: 1807810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tsetse and trypanosomosis in Africa: the challenges, the opportunities.
    Ilemobade AA
    Onderstepoort J Vet Res; 2009 Mar; 76(1):35-40. PubMed ID: 19967926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The control of the vectors of the sleeping sickness caused by Trypanosoma gambiense Dutton (author's transl)].
    Challier A; Laveissiere C
    Med Trop (Mars); 1978; 38(6):697-703. PubMed ID: 745535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of tsetse flies, Glossina spp.
    Dame DA; Jordan AM
    Adv Vet Sci Comp Med; 1981; 25():101-19. PubMed ID: 7034497
    [No Abstract]   [Full Text] [Related]  

  • 35. Negative Density-dependent Dispersal in Tsetse Flies: A Risk for Control Campaigns?
    De Meeûs T; Ravel S; Solano P; Bouyer J
    Trends Parasitol; 2019 Aug; 35(8):615-621. PubMed ID: 31201131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tsetse fly control and trypanosomiasis in Africa, quo vadis?
    Dräger N
    Bull Soc Pathol Exot; 2011 Feb; 104(1):90-2. PubMed ID: 21104211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a rational policy for dealing with tsetse.
    Torr SJ; Hargrove JW; Vale GA
    Trends Parasitol; 2005 Nov; 21(11):537-41. PubMed ID: 16140579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Glossina, domestic livestock and wild fauna: is a conciliation possible?].
    Gruvel J
    Acta Zool Pathol Antverp; 1980 Oct; (75):29-48. PubMed ID: 7196143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenotrophic viviparity in tsetse flies: potential for population control and as an insect model for lactation.
    Benoit JB; Attardo GM; Baumann AA; Michalkova V; Aksoy S
    Annu Rev Entomol; 2015 Jan; 60():351-71. PubMed ID: 25341093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives.
    Kariithi HM; Meki IK; Schneider DI; De Vooght L; Khamis FM; Geiger A; Demirbaş-Uzel G; Vlak JM; iNCE IA; Kelm S; Njiokou F; Wamwiri FN; Malele II; Weiss BL; Abd-Alla AMM
    BMC Microbiol; 2018 Nov; 18(Suppl 1):179. PubMed ID: 30470182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.