BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22878379)

  • 21. High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients.
    Scroggins BT; Prince T; Shao J; Uma S; Huang W; Guo Y; Yun BG; Hedman K; Matts RL; Hartson SD
    Biochemistry; 2003 Nov; 42(43):12550-61. PubMed ID: 14580201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery.
    Ratzke C; Hellenkamp B; Hugel T
    Nat Commun; 2014 Jun; 5():4192. PubMed ID: 24947016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cooperative Nucleotide Binding in Hsp90 and Its Regulation by Aha1.
    Wortmann P; Götz M; Hugel T
    Biophys J; 2017 Oct; 113(8):1711-1718. PubMed ID: 29045865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23.
    Karagöz GE; Duarte AM; Ippel H; Uetrecht C; Sinnige T; van Rosmalen M; Hausmann J; Heck AJ; Boelens R; Rüdiger SG
    Proc Natl Acad Sci U S A; 2011 Jan; 108(2):580-5. PubMed ID: 21183720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The charged linker of the molecular chaperone Hsp90 modulates domain contacts and biological function.
    Jahn M; Rehn A; Pelz B; Hellenkamp B; Richter K; Rief M; Buchner J; Hugel T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17881-6. PubMed ID: 25468961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico identification and computational analysis of the nucleotide binding site in the C-terminal domain of Hsp90.
    Roy SS; Kapoor M
    J Mol Graph Model; 2016 Nov; 70():253-274. PubMed ID: 27771574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors.
    Zhou V; Han S; Brinker A; Klock H; Caldwell J; Gu XJ
    Anal Biochem; 2004 Aug; 331(2):349-57. PubMed ID: 15265741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform.
    McLaughlin SH; Ventouras LA; Lobbezoo B; Jackson SE
    J Mol Biol; 2004 Nov; 344(3):813-26. PubMed ID: 15533447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the binding site of C-terminal hsp90 inhibitors.
    Sgobba M; Forestiero R; Degliesposti G; Rastelli G
    J Chem Inf Model; 2010 Sep; 50(9):1522-8. PubMed ID: 20828111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational dynamics of the molecular chaperone Hsp90.
    Krukenberg KA; Street TO; Lavery LA; Agard DA
    Q Rev Biophys; 2011 May; 44(2):229-55. PubMed ID: 21414251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90.
    Li J; Sun L; Xu C; Yu F; Zhou H; Zhao Y; Zhang J; Cai J; Mao C; Tang L; Xu Y; He J
    Acta Biochim Biophys Sin (Shanghai); 2012 Apr; 44(4):300-6. PubMed ID: 22318716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone.
    Street TO; Zeng X; Pellarin R; Bonomi M; Sali A; Kelly MJ; Chu F; Agard DA
    J Mol Biol; 2014 Jun; 426(12):2393-404. PubMed ID: 24726919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise with mutation to the ATP binding pocket of a eukaryotic Hsp90.
    Millson SH; Chua CS; Roe SM; Polier S; Solovieva S; Pearl LH; Sim TS; Prodromou C; Piper PW
    FASEB J; 2011 Nov; 25(11):3828-37. PubMed ID: 21778327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition.
    Chadli A; Bruinsma ES; Stensgard B; Toft D
    Biochemistry; 2008 Mar; 47(9):2850-7. PubMed ID: 18211007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational switching of the molecular chaperone Hsp90 via regulated phosphorylation.
    Soroka J; Wandinger SK; Mäusbacher N; Schreiber T; Richter K; Daub H; Buchner J
    Mol Cell; 2012 Feb; 45(4):517-28. PubMed ID: 22365831
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90.
    Itoh H; Ogura M; Komatsuda A; Wakui H; Miura AB; Tashima Y
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):697-703. PubMed ID: 10527951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphotyrosine confers client specificity to Hsp90.
    Mayer MP
    Mol Cell; 2010 Feb; 37(3):295-6. PubMed ID: 20159548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cochaperones convey the energy of ATP hydrolysis for directional action of Hsp90.
    Vollmar L; Schimpf J; Hermann B; Hugel T
    Nat Commun; 2024 Jan; 15(1):569. PubMed ID: 38233436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A common conformationally coupled ATPase mechanism for yeast and human cytoplasmic HSP90s.
    Vaughan CK; Piper PW; Pearl LH; Prodromou C
    FEBS J; 2009 Jan; 276(1):199-209. PubMed ID: 19032597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.