BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 22878843)

  • 1. Features and applications of bilirubin oxidases.
    Mano N
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):301-7. PubMed ID: 22878843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bilirubin oxidases in bioelectrochemistry: features and recent findings.
    Mano N; Edembe L
    Biosens Bioelectron; 2013 Dec; 50():478-85. PubMed ID: 23911663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase.
    Sakurai T; Kataoka K
    Chem Rec; 2007; 7(4):220-9. PubMed ID: 17663447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification, characterization and decolorization of bilirubin oxidase from Myrothecium verrucaria 3.2190.
    Han X; Zhao M; Lu L; Liu Y
    Fungal Biol; 2012 Aug; 116(8):863-71. PubMed ID: 22862914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilirubin oxidase from Magnaporthe oryzae: an attractive new enzyme for biotechnological applications.
    Durand F; Gounel S; Kjaergaard CH; Solomon EI; Mano N
    Appl Microbiol Biotechnol; 2012 Dec; 96(6):1489-98. PubMed ID: 22350257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bilirubin oxidase-like proteins from Podospora anserina: promising thermostable enzymes for application in transformation of plant biomass.
    Xie N; Ruprich-Robert G; Silar P; Chapeland-Leclerc F
    Environ Microbiol; 2015 Mar; 17(3):866-75. PubMed ID: 24947769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox potentials of the blue copper sites of bilirubin oxidases.
    Christenson A; Shleev S; Mano N; Heller A; Gorton L
    Biochim Biophys Acta; 2006 Dec; 1757(12):1634-41. PubMed ID: 17020746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen.
    Kataoka K; Kitagawa R; Inoue M; Naruse D; Sakurai T; Huang HW
    Biochemistry; 2005 May; 44(18):7004-12. PubMed ID: 15865445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bilirubin oxidase from Bacillus pumilus: a promising enzyme for the elaboration of efficient cathodes in biofuel cells.
    Durand F; Kjaergaard CH; Suraniti E; Gounel S; Hadt RG; Solomon EI; Mano N
    Biosens Bioelectron; 2012 May; 35(1):140-146. PubMed ID: 22410485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria.
    Ivnitski D; Artyushkova K; Atanassov P
    Bioelectrochemistry; 2008 Nov; 74(1):101-10. PubMed ID: 18571994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid biocathode: surface display of O2-reducing enzymes for microbial fuel cell applications.
    Szczupak A; Kol-Kalman D; Alfonta L
    Chem Commun (Camb); 2012 Jan; 48(1):49-51. PubMed ID: 22075939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.
    Fang Z; Li T; Wang Q; Zhang X; Peng H; Fang W; Hong Y; Ge H; Xiao Y
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1103-10. PubMed ID: 20963410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into multicopper oxidase laccase from
    Agrawal K; Shankar J; Kumar R; Verma P
    J Environ Sci Health B; 2020; 55(12):1048-1060. PubMed ID: 32877269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensatory binding of an asparagine residue to the coordination-unsaturated type I Cu center in bilirubin oxidase mutants.
    Kataoka K; Tsukamoto K; Kitagawa R; Ito T; Sakurai T
    Biochem Biophys Res Commun; 2008 Jul; 371(3):416-9. PubMed ID: 18445482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal laccases - occurrence and properties.
    Baldrian P
    FEMS Microbiol Rev; 2006 Mar; 30(2):215-42. PubMed ID: 16472305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilirubin oxidase activity of Bacillus subtilis CotA.
    Sakasegawa S; Ishikawa H; Imamura S; Sakuraba H; Goda S; Ohshima T
    Appl Environ Microbiol; 2006 Jan; 72(1):972-5. PubMed ID: 16391148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 A resolution using a twinned crystal.
    Mizutani K; Toyoda M; Sagara K; Takahashi N; Sato A; Kamitaka Y; Tsujimura S; Nakanishi Y; Sugiura T; Yamaguchi S; Kano K; Mikami B
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Jul; 66(Pt 7):765-70. PubMed ID: 20606269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of buckypaper-based nanostructured electrodes as a novel material for biofuel cell applications.
    Hussein L; Urban G; Krüger M
    Phys Chem Chem Phys; 2011 Apr; 13(13):5831-9. PubMed ID: 21327220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peculiarities of Pycnoporus species for applications in biotechnology.
    Lomascolo A; Uzan-Boukhris E; Herpoël-Gimbert I; Sigoillot JC; Lesage-Meessen L
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1129-49. PubMed ID: 22038244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing the catalytic activity of Bilirubin oxidase from Bacillus pumilus: Importance of host strain and chaperones proteins.
    Gounel S; Rouhana J; Stines-Chaumeil C; Cadet M; Mano N
    J Biotechnol; 2016 Jul; 230():19-25. PubMed ID: 27165502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.