BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22878872)

  • 1. Prevention of hyperoxia-mediated pulmonary inflammation in neonatal rats by caffeine.
    Weichelt U; Cay R; Schmitz T; Strauss E; Sifringer M; Bührer C; Endesfelder S
    Eur Respir J; 2013 Apr; 41(4):966-73. PubMed ID: 22878872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lung inflammation in hyperoxia can be prevented by antichemokine treatment in newborn rats.
    Deng H; Mason SN; Auten RL
    Am J Respir Crit Care Med; 2000 Dec; 162(6):2316-23. PubMed ID: 11112157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Anti-inflammatory effects of erythropoietin on hyperoxia-induced bronchopulmonary dysplasia in newborn rats].
    Wang XL; Xue XD
    Zhonghua Er Ke Za Zhi; 2009 Jun; 47(6):446-51. PubMed ID: 19951473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytokine response during hyperoxia: sequential production of pulmonary tumor necrosis factor and interleukin-6 in neonatal rats.
    Ben-Ari J; Makhoul IR; Dorio RJ; Buckley S; Warburton D; Walker SM
    Isr Med Assoc J; 2000 May; 2(5):365-9. PubMed ID: 10892391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deficits in lung alveolarization and function after systemic maternal inflammation and neonatal hyperoxia exposure.
    Velten M; Heyob KM; Rogers LK; Welty SE
    J Appl Physiol (1985); 2010 May; 108(5):1347-56. PubMed ID: 20223995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of inflammatory cell trafficking and alveolar simplification by the heme oxygenase-1 product carbon monoxide.
    Anyanwu AC; Bentley JK; Popova AP; Malas O; Alghanem H; Goldsmith AM; Hershenson MB; Pinsky DJ
    Am J Physiol Lung Cell Mol Physiol; 2014 Apr; 306(8):L749-63. PubMed ID: 24532288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidative effects of caffeine in a hyperoxia-based rat model of bronchopulmonary dysplasia.
    Endesfelder S; Strauß E; Scheuer T; Schmitz T; Bührer C
    Respir Res; 2019 May; 20(1):88. PubMed ID: 31077204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angiotensin II type 2 receptor ligand PD123319 attenuates hyperoxia-induced lung and heart injury at a low dose in newborn rats.
    Wagenaar GT; Sengers RM; Laghmani el H; Chen X; Lindeboom MP; Roks AJ; Folkerts G; Walther FJ
    Am J Physiol Lung Cell Mol Physiol; 2014 Aug; 307(3):L261-72. PubMed ID: 24951776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats.
    Jagarapu J; Kelchtermans J; Rong M; Chen S; Hehre D; Hummler S; Faridi MH; Gupta V; Wu S
    Am J Respir Cell Mol Biol; 2015 Dec; 53(6):793-801. PubMed ID: 25909334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuate hyperoxia-induced lung injury in neonatal mice.
    Ma L; Li N; Liu X; Shaw L; Li Calzi S; Grant MB; Neu J
    Nutrition; 2012; 28(11-12):1186-91. PubMed ID: 23044165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimacrophage chemokine treatment prevents neutrophil and macrophage influx in hyperoxia-exposed newborn rat lung.
    Vozzelli MA; Mason SN; Whorton MH; Auten RL
    Am J Physiol Lung Cell Mol Physiol; 2004 Mar; 286(3):L488-93. PubMed ID: 12588706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of Akt protects alveoli from neonatal oxygen-induced lung injury.
    Alphonse RS; Vadivel A; Coltan L; Eaton F; Barr AJ; Dyck JR; Thébaud B
    Am J Respir Cell Mol Biol; 2011 Feb; 44(2):146-54. PubMed ID: 20348209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury.
    Teng RJ; Jing X; Michalkiewicz T; Afolayan AJ; Wu TJ; Konduri GG
    Am J Physiol Lung Cell Mol Physiol; 2017 May; 312(5):L586-L598. PubMed ID: 28213471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-neutrophil chemokine preserves alveolar development in hyperoxia-exposed newborn rats.
    Auten RL; Mason SN; Tanaka DT; Welty-Wolf K; Whorton MH
    Am J Physiol Lung Cell Mol Physiol; 2001 Aug; 281(2):L336-44. PubMed ID: 11435208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposing effects of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat.
    Yi M; Jankov RP; Belcastro R; Humes D; Copland I; Shek S; Sweezey NB; Post M; Albertine KH; Auten RL; Tanswell AK
    Am J Respir Crit Care Med; 2004 Dec; 170(11):1188-96. PubMed ID: 15347560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose-related effects of hyperoxia on the lung inflammatory response in septic rats.
    Waisman D; Brod V; Rahat MA; Amit-Cohen BC; Lahat N; Rimar D; Menn-Josephy H; David M; Lavon O; Cavari Y; Bitterman H
    Shock; 2012 Jan; 37(1):95-102. PubMed ID: 21921827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoptosis in neonatal murine lung exposed to hyperoxia.
    McGrath-Morrow SA; Stahl J
    Am J Respir Cell Mol Biol; 2001 Aug; 25(2):150-5. PubMed ID: 11509323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in pulmonary tissue structure and KL-6/MUC1 expression in a newborn rat model of hyperoxia-induced bronchopulmonary dysplasia.
    Zhu Y; Fu J; You K; Jin L; Wang M; Lu D; Xue X
    Exp Lung Res; 2013 Dec; 39(10):417-26. PubMed ID: 24298937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperoxia arrests alveolar development through suppression of histone deacetylases in neonatal rats.
    Zhu L; Li H; Tang J; Zhu J; Zhang Y
    Pediatr Pulmonol; 2012 Mar; 47(3):264-74. PubMed ID: 21905265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and activity of epithelial sodium channel in hyperoxia-induced bronchopulmonary dysplasia in neonatal rats.
    Ji W; Fu J; Nie H; Xue X
    Pediatr Int; 2012 Dec; 54(6):735-42. PubMed ID: 22591391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.