These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 22879029)

  • 41. Two-photon imaging of blood flow in the rat cortex.
    Driscoll JD; Shih AY; Drew PJ; Cauwenberghs G; Kleinfeld D
    Cold Spring Harb Protoc; 2013 Aug; 2013(8):759-67. PubMed ID: 23906919
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of low- and high-flux capillaries to slow hemodynamic fluctuations in the cerebral cortex of mice.
    Li B; Lee J; Boas DA; Lesage F
    J Cereb Blood Flow Metab; 2016 Aug; 36(8):1351-6. PubMed ID: 27165011
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dependence of cerebral capillary hematocrit on red cell flow separation at bifurcations: a computer simulation study.
    Hudetz AG
    Adv Exp Med Biol; 1990; 277():31-4. PubMed ID: 2096637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local cerebral blood flow during the first hour following acute ligation of multiple arterioles in rat whisker barrel cortex.
    Wei L; Craven K; Erinjeri J; Liang GE; Bereczki D; Rovainen CM; Woolsey TA; Fenstermacher JD
    Neurobiol Dis; 1998 Sep; 5(3):142-50. PubMed ID: 9848087
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intracortical microcirculatory change induced by anesthesia in rat somatosensory cortex.
    Masamoto K; Obata T; Kanno I
    Adv Exp Med Biol; 2010; 662():57-61. PubMed ID: 20204771
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of red blood cell flux and velocity estimations based on optical coherence tomography intensity fluctuations.
    Marchand PJ; Lu X; Zhang C; Lesage F
    Sci Rep; 2020 Nov; 10(1):19584. PubMed ID: 33177606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Estimating brain microvascular blood flows from partial two-photon microscopy data by computation with a circuit model.
    Sunwoo J; Cornelius NR; Doerschuk PC; Schaffer CB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():174-7. PubMed ID: 22254278
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional reactivity of cerebral capillaries.
    Stefanovic B; Hutchinson E; Yakovleva V; Schram V; Russell JT; Belluscio L; Koretsky AP; Silva AC
    J Cereb Blood Flow Metab; 2008 May; 28(5):961-72. PubMed ID: 18059431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Velocity measurements of normal and sickle red blood cells in the rat retinal and choroidal vasculatures.
    Wajer SD; Taomoto M; McLeod DS; McCally RL; Nishiwaki H; Fabry ME; Nagel RL; Lutty GA
    Microvasc Res; 2000 Nov; 60(3):281-93. PubMed ID: 11078644
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    Ann Biomed Eng; 2009 Aug; 37(8):1546-59. PubMed ID: 19521772
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Early capillary flux homogenization in response to neural activation.
    Lee J; Wu W; Boas DA
    J Cereb Blood Flow Metab; 2016 Feb; 36(2):375-80. PubMed ID: 26661145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In-vivo confocal scanning laser microscopy of the cerebral microcirculation.
    Dirnagl U; Villringer A; Einhäupl KM
    J Microsc; 1992 Jan; 165(Pt 1):147-57. PubMed ID: 1552568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A method for 2-photon imaging of blood flow in the neocortex through a cranial window.
    Mostany R; Portera-Cailliau C
    J Vis Exp; 2008 Feb; (12):. PubMed ID: 19066563
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative estimates of stimulation-induced perfusion response using two-photon fluorescence microscopy of cortical microvascular networks.
    Chinta LV; Lindvere L; Dorr A; Sahota B; Sled JG; Stefanovic B
    Neuroimage; 2012 Jul; 61(3):517-24. PubMed ID: 22521258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two-photon microscopy allows imaging and characterization of cochlear microvasculature in vivo.
    Ihler F; Bertlich M; Weiss B; Dietzel S; Canis M
    Biomed Res Int; 2015; 2015():154272. PubMed ID: 25883941
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels.
    Lecoq J; Parpaleix A; Roussakis E; Ducros M; Goulam Houssen Y; Vinogradov SA; Charpak S
    Nat Med; 2011 Jun; 17(7):893-8. PubMed ID: 21642977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):489-506. PubMed ID: 16147466
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new variational method for erythrocyte velocity estimation in wide-field imaging in vivo.
    Deneux T; Faugeras O; Takerkart S; Masson GS; Vanzetta I
    IEEE Trans Med Imaging; 2011 Aug; 30(8):1527-45. PubMed ID: 21427018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.