These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 22879040)

  • 1. Biological maintenance of distal vein arterialization.
    Sasajima T; Koyama T
    Adv Exp Med Biol; 2013; 765():245-250. PubMed ID: 22879040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sufficient oxygen can be transported to resting skeletal muscle via arterialization of the vein: theoretical considerations in a rat model.
    Koyama T; Sasajima T
    Adv Exp Med Biol; 2011; 701():335-9. PubMed ID: 21445806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis.
    Ji JW; Tsoukias NM; Goldman D; Popel AS
    J Theor Biol; 2006 Jul; 241(1):94-108. PubMed ID: 16388825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological factors influencing capillary growth.
    Egginton S
    Acta Physiol (Oxf); 2011 Jul; 202(3):225-39. PubMed ID: 20946238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary-tissue arrangement in the skeletal muscle optimized for oxygen transport in all mammals.
    Baba K; Kawamura T; Shibata M; Sohirad M; Kamiya A
    Microvasc Res; 1995 Mar; 49(2):163-79. PubMed ID: 7603354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Krogh cylinders in retinal development, panretinal hypoperfusion and diabetic retinopathy.
    McLeod D
    Acta Ophthalmol; 2010 Dec; 88(8):817-35. PubMed ID: 20064121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Venular valves and retrograde perfusion.
    Koyama T; Sugihara-Seki M; Sasajima T; Kikuchi S
    Adv Exp Med Biol; 2014; 812():317-323. PubMed ID: 24729249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-dependent effects of microspheres on vasoconstrictor-mediated change in oxygen uptake by perfused rat hindlimb.
    Vincent MA; Rattigan S; Clark MG
    Microvasc Res; 2001 Nov; 62(3):306-14. PubMed ID: 11678633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood flow remodels growing vasculature during vascular endothelial growth factor gene therapy and determines between capillary arterialization and sprouting angiogenesis.
    Rissanen TT; Korpisalo P; Markkanen JE; Liimatainen T; Ordén MR; Kholová I; de Goede A; Heikura T; Gröhn OH; Ylä-Herttuala S
    Circulation; 2005 Dec; 112(25):3937-46. PubMed ID: 16344386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal muscle capillarity during hypoxia: VEGF and its activation.
    Breen E; Tang K; Olfert M; Knapp A; Wagner P
    High Alt Med Biol; 2008; 9(2):158-66. PubMed ID: 18578647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Krogh's diffusion coefficient for oxygen in isolated Xenopus skeletal muscle fibers and rat myocardial trabeculae at maximum rates of oxygen consumption.
    van der Laarse WJ; des Tombe AL; van Beek-Harmsen BJ; Lee-de Groot MB; Jaspers RT
    J Appl Physiol (1985); 2005 Dec; 99(6):2173-80. PubMed ID: 16051713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of arterial and venous occlusion on skeletal muscle hemodynamics and oxygen consumption].
    Kan VN; Levtov VA
    Fiziol Zh SSSR Im I M Sechenova; 1970 Apr; 56(4):618-24. PubMed ID: 5503422
    [No Abstract]   [Full Text] [Related]  

  • 13. Mouse model of venous bypass graft arteriosclerosis.
    Zou Y; Dietrich H; Hu Y; Metzler B; Wick G; Xu Q
    Am J Pathol; 1998 Oct; 153(4):1301-10. PubMed ID: 9777962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of counter-current exchange in preventing hypoxia in skeletal muscle.
    Teboh-Ewungkem MI; Salathe EP
    Bull Math Biol; 2006 Nov; 68(8):2191-204. PubMed ID: 17086494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thrombin promotes arteriogenesis and hemodynamic recovery in a rabbit hindlimb ischemia model.
    Katsanos K; Karnabatidis D; Diamantopoulos A; Kagadis GC; Ravazoula P; Nikiforidis GC; Siablis D; Tsopanoglou NE
    J Vasc Surg; 2009 Apr; 49(4):1000-12. PubMed ID: 19217750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia.
    Regueira T; Djafarzadeh S; Brandt S; Gorrasi J; Borotto E; Porta F; Takala J; Bracht H; Shaw S; Lepper PM; Jakob SM
    Acta Anaesthesiol Scand; 2012 Aug; 56(7):846-59. PubMed ID: 22571590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Oxygen transport in skeletal muscles working with its maximum consumption during hypoxemia].
    Man'kovs'ka IM; Liabakh KH
    Fiziol Zh (1994); 2003; 49(3):75-9. PubMed ID: 12918254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model of diffusional shunting of oxygen from arteries to veins in the kidney.
    Gardiner BS; Smith DW; O'Connor PM; Evans RG
    Am J Physiol Renal Physiol; 2011 Jun; 300(6):F1339-52. PubMed ID: 21367922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle angiogenesis. A possible role for hypoxia.
    Wagner PD
    Adv Exp Med Biol; 2001; 502():21-38. PubMed ID: 11950140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle.
    Mac Gabhann F; Ji JW; Popel AS
    J Appl Physiol (1985); 2007 Feb; 102(2):722-34. PubMed ID: 17038488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.