BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22879069)

  • 1. TGF beta signaling and its role in glioma pathogenesis.
    Kaminska B; Kocyk M; Kijewska M
    Adv Exp Med Biol; 2013; 986():171-87. PubMed ID: 22879069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis.
    Kaminska B; Cyranowski S
    Adv Exp Med Biol; 2020; 1202():179-201. PubMed ID: 32034714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TGF beta signalling and its role in tumour pathogenesis.
    Kaminska B; Wesolowska A; Danilkiewicz M
    Acta Biochim Pol; 2005; 52(2):329-37. PubMed ID: 15990918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An imbalance between Smad and MAPK pathways is responsible for TGF-beta tumor promoting effects in high-grade gliomas.
    Nickl-Jockschat T; Arslan F; Doerfelt A; Bogdahn U; Bosserhoff A; Hau P
    Int J Oncol; 2007 Feb; 30(2):499-507. PubMed ID: 17203233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in human malignant glioma cells.
    Tritschler I; Gramatzki D; Capper D; Mittelbronn M; Meyermann R; Saharinen J; Wick W; Keski-Oja J; Weller M
    Int J Cancer; 2009 Aug; 125(3):530-40. PubMed ID: 19431147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of transforming growth factor-β inhibitor on the proliferation of glioma stem/progenitor cell.
    Zhang Q; Guo W; Di C; Lou M; Li H; Zhao Y
    Pol J Pathol; 2017; 68(4):312-317. PubMed ID: 29517201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-β Signaling Promotes Glioma Progression Through Stabilizing Sox9.
    Chao M; Liu N; Sun Z; Jiang Y; Jiang T; Xv M; Jia L; Tu Y; Wang L
    Front Immunol; 2020; 11():592080. PubMed ID: 33613515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of transforming growth factor-beta (TGF-beta) and epidermal growth factor (EGF) in human glioma cells.
    Held-Feindt J; Lütjohann B; Ungefroren H; Mehdorn HM; Mentlein R
    J Neurooncol; 2003 Jun; 63(2):117-27. PubMed ID: 12825816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo.
    Uhl M; Aulwurm S; Wischhusen J; Weiler M; Ma JY; Almirez R; Mangadu R; Liu YW; Platten M; Herrlinger U; Murphy A; Wong DH; Wick W; Higgins LS; Weller M
    Cancer Res; 2004 Nov; 64(21):7954-61. PubMed ID: 15520202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model.
    Ashley DM; Kong FM; Bigner DD; Hale LP
    Cancer Res; 1998 Jan; 58(2):302-9. PubMed ID: 9443409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor-beta1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-kappaB, JNK, and Ras signaling pathways.
    Park JI; Lee MG; Cho K; Park BJ; Chae KS; Byun DS; Ryu BK; Park YK; Chi SG
    Oncogene; 2003 Jul; 22(28):4314-32. PubMed ID: 12853969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VEGFR2 expression and TGF-β signaling in initial and recurrent high-grade human glioma.
    Kuczynski EA; Patten SG; Coomber BL
    Oncology; 2011; 81(2):126-34. PubMed ID: 21985798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tenascin-C protein is induced by transforming growth factor-beta1 but does not correlate with time to tumor progression in high-grade gliomas.
    Hau P; Kunz-Schughart LA; Rümmele P; Arslan F; Dörfelt A; Koch H; Lohmeier A; Hirschmann B; Müller A; Bogdahn U; Bosserhoff AK
    J Neurooncol; 2006 Mar; 77(1):1-7. PubMed ID: 16292494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TGF-β induced miR-132 enhances the activation of TGF-β signaling through inhibiting SMAD7 expression in glioma cells.
    Wang ZH; Zhang QS; Duan YL; Zhang JL; Li GF; Zheng DL
    Biochem Biophys Res Commun; 2015 Jul; 463(3):187-92. PubMed ID: 25983322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thrombin up-regulates vascular endothelial growth factor in experimental gliomas.
    Xu Y; Gu Y; Keep RF; Heth J; Muraszko KM; Xi G; Hua Y
    Neurol Res; 2009 Sep; 31(7):759-65. PubMed ID: 19108760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways.
    Sun J; Liu SZ; Lin Y; Cao XP; Liu JM
    Biochem Biophys Res Commun; 2014 Jan; 443(3):1066-72. PubMed ID: 24370825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of transforming growth factor-beta signaling.
    Zhu HJ; Burgess AW
    Mol Cell Biol Res Commun; 2001 Nov; 4(6):321-30. PubMed ID: 11703090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-β signalling: role and consequences of Smad linker region phosphorylation.
    Kamato D; Burch ML; Piva TJ; Rezaei HB; Rostam MA; Xu S; Zheng W; Little PJ; Osman N
    Cell Signal; 2013 Oct; 25(10):2017-24. PubMed ID: 23770288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways.
    Duan R; Han L; Wang Q; Wei J; Chen L; Zhang J; Kang C; Wang L
    Oncotarget; 2015 Sep; 6(29):27778-93. PubMed ID: 26356815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.