These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 22879507)

  • 21. Low-potential respirators support electricity production in microbial fuel cells.
    Grüning A; Beecroft NJ; Avignone-Rossa C
    Microb Ecol; 2015 Jul; 70(1):266-73. PubMed ID: 25388758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extremophiles in biofuel synthesis.
    Barnard D; Casanueva A; Tuffin M; Cowan D
    Environ Technol; 2010; 31(8-9):871-88. PubMed ID: 20662378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.
    Jang YS; Park JM; Choi S; Choi YJ; Seung do Y; Cho JH; Lee SY
    Biotechnol Adv; 2012; 30(5):989-1000. PubMed ID: 21889585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bio-based production of C2-C6 platform chemicals.
    Jang YS; Kim B; Shin JH; Choi YJ; Choi S; Song CW; Lee J; Park HG; Lee SY
    Biotechnol Bioeng; 2012 Oct; 109(10):2437-59. PubMed ID: 22766912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioelectricity from kitchen and bamboo waste in a microbial fuel cell.
    Moqsud MA; Omine K; Yasufuku N; Bushra QS; Hyodo M; Nakata Y
    Waste Manag Res; 2014 Feb; 32(2):124-30. PubMed ID: 24519226
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.
    Lewis AJ; Ren S; Ye X; Kim P; Labbe N; Borole AP
    Bioresour Technol; 2015 Nov; 195():231-41. PubMed ID: 26210530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct biological conversion of electrical current into methane by electromethanogenesis.
    Cheng S; Xing D; Call DF; Logan BE
    Environ Sci Technol; 2009 May; 43(10):3953-8. PubMed ID: 19544913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autotrophic nitrite removal in the cathode of microbial fuel cells.
    Puig S; Serra M; Vilar-Sanz A; Cabré M; Bañeras L; Colprim J; Balaguer MD
    Bioresour Technol; 2011 Mar; 102(6):4462-7. PubMed ID: 21262566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].
    Yang Y; Sun G; Xu M
    Wei Sheng Wu Xue Bao; 2010 Jul; 50(7):847-52. PubMed ID: 20815229
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W
    Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Life cycle assessment integrated with thermodynamic analysis of bio-fuel options for solid oxide fuel cells.
    Lin J; Babbitt CW; Trabold TA
    Bioresour Technol; 2013 Jan; 128():495-504. PubMed ID: 23201905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation.
    Jiang H; Luo S; Shi X; Dai M; Guo RB
    Biotechnol Lett; 2012 Jul; 34(7):1269-74. PubMed ID: 22421975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte.
    Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN
    Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial solar cells: applying photosynthetic and electrochemically active organisms.
    Strik DP; Timmers RA; Helder M; Steinbusch KJ; Hamelers HV; Buisman CJ
    Trends Biotechnol; 2011 Jan; 29(1):41-9. PubMed ID: 21067833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimizing losses in bio-electrochemical systems: the road to applications.
    Clauwaert P; Aelterman P; Pham TH; De Schamphelaire L; Carballa M; Rabaey K; Verstraete W
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):901-13. PubMed ID: 18506439
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell.
    Villano M; Scardala S; Aulenta F; Majone M
    Bioresour Technol; 2013 Feb; 130():366-71. PubMed ID: 23313682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anaerobic conversion of microalgal biomass to sustainable energy carriers--a review.
    Lakaniemi AM; Tuovinen OH; Puhakka JA
    Bioresour Technol; 2013 May; 135():222-31. PubMed ID: 23021960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).
    Strik DP; Terlouw H; Hamelers HV; Buisman CJ
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):659-68. PubMed ID: 18797867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trends in renewable energy production employing biomass-based biochar.
    Kant Bhatia S; Palai AK; Kumar A; Kant Bhatia R; Kumar Patel A; Kumar Thakur V; Yang YH
    Bioresour Technol; 2021 Nov; 340():125644. PubMed ID: 34332449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Woody biomass: Niche position as a source of sustainable renewable chemicals and energy and kinetics of hot-water extraction/hydrolysis.
    Liu S
    Biotechnol Adv; 2010; 28(5):563-82. PubMed ID: 20493246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.