BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22879895)

  • 1. N-terminal domain of nuclear IL-1α shows structural similarity to the C-terminal domain of Snf1 and binds to the HAT/core module of the SAGA complex.
    Zamostna B; Novak J; Vopalensky V; Masek T; Burysek L; Pospisek M
    PLoS One; 2012; 7(8):e41801. PubMed ID: 22879895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular interleukin-1alpha functionally interacts with histone acetyltransferase complexes.
    Buryskova M; Pospisek M; Grothey A; Simmet T; Burysek L
    J Biol Chem; 2004 Feb; 279(6):4017-26. PubMed ID: 14612453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes.
    Knutson BA; Hahn S
    Mol Cell Biol; 2011 Feb; 31(4):818-31. PubMed ID: 21149579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the transcription coactivator SAGA.
    Wang H; Dienemann C; Stützer A; Urlaub H; Cheung ACM; Cramer P
    Nature; 2020 Jan; 577(7792):717-720. PubMed ID: 31969703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.
    Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA
    Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module.
    Haile ST; Rahman S; Fields JK; Orsburn BC; Bumpus NN; Wolberger C
    Biochim Biophys Acta Gene Regul Mech; 2023 Jun; 1866(2):194929. PubMed ID: 36965704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The related coactivator complexes SAGA and ATAC control embryonic stem cell self-renewal through acetyltransferase-independent mechanisms.
    Fischer V; Plassard D; Ye T; Reina-San-Martin B; Stierle M; Tora L; Devys D
    Cell Rep; 2021 Aug; 36(8):109598. PubMed ID: 34433046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubp8 and SAGA regulate Snf1 AMP kinase activity.
    Wilson MA; Koutelou E; Hirsch C; Akdemir K; Schibler A; Barton MC; Dent SY
    Mol Cell Biol; 2011 Aug; 31(15):3126-35. PubMed ID: 21628526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Che1/AATF interacts with subunits of the histone acetyltransferase core module of SAGA complexes.
    Caliskan G; Baris IC; Ayaydin F; Dobson MJ; Senarisoy M; Boros IM; Topcu Z; Zencir S
    PLoS One; 2017; 12(12):e0189193. PubMed ID: 29232376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pseudokinase Domain of
    Berg MD; Genereaux J; Karagiannis J; Brandl CJ
    G3 (Bethesda); 2018 May; 8(6):1943-1957. PubMed ID: 29626083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function.
    Kamata K; Hatanaka A; Goswami G; Shinmyozu K; Nakayama J; Urano T; Hatashita M; Uchida H; Oki M
    Genes Cells; 2013 Sep; 18(9):823-37. PubMed ID: 23819448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2.
    Sanz AB; García R; Rodríguez-Peña JM; Nombela C; Arroyo J
    Nucleic Acids Res; 2016 Sep; 44(15):7159-72. PubMed ID: 27112564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Not5-dependent co-translational assembly of Ada2 and Spt20 is essential for functional integrity of SAGA.
    Kassem S; Villanyi Z; Collart MA
    Nucleic Acids Res; 2017 Feb; 45(3):1186-1199. PubMed ID: 28180299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex.
    Setiaputra D; Ross JD; Lu S; Cheng DT; Dong MQ; Yip CK
    J Biol Chem; 2015 Apr; 290(16):10057-70. PubMed ID: 25713136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex.
    Grant PA; Duggan L; Côté J; Roberts SM; Brownell JE; Candau R; Ohba R; Owen-Hughes T; Allis CD; Winston F; Berger SL; Workman JL
    Genes Dev; 1997 Jul; 11(13):1640-50. PubMed ID: 9224714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAGA-associated Sgf73p facilitates formation of the preinitiation complex assembly at the promoters either in a HAT-dependent or independent manner in vivo.
    Shukla A; Bajwa P; Bhaumik SR
    Nucleic Acids Res; 2006; 34(21):6225-32. PubMed ID: 17090597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex.
    Jiang R; Carlson M
    Mol Cell Biol; 1997 Apr; 17(4):2099-106. PubMed ID: 9121458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex.
    Han Y; Luo J; Ranish J; Hahn S
    EMBO J; 2014 Nov; 33(21):2534-46. PubMed ID: 25216679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.
    Mangat S; Chandrashekarappa D; McCartney RR; Elbing K; Schmidt MC
    Eukaryot Cell; 2010 Jan; 9(1):173-83. PubMed ID: 19897735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.