These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22879944)

  • 1. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR).
    Rishishwar L; Varghese N; Tyagi E; Harvey SC; Jordan IK; McCarty NA
    PLoS One; 2012; 7(8):e42336. PubMed ID: 22879944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disease-relevant mutations alter amino acid co-evolution networks in the second nucleotide binding domain of CFTR.
    Ivey G; Youker RT
    PLoS One; 2020; 15(1):e0227668. PubMed ID: 31978131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels.
    Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC
    J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectrum of Cystic Fibrosis Conductance Regulator Gene Mutations Reported in Pakistani Descent Cystic Fibrosis Patients.
    Majid H; Khan AH; Hashmi SB; Moatter T; Nasir A
    J Coll Physicians Surg Pak; 2022 Aug; 32(8):1042-1046. PubMed ID: 35932130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cystic fibrosis and congenital bilateral absence of the vas deferens-associated mutations on cystic fibrosis transmembrane conductance regulator-mediated regulation of separate channels.
    Mickle JE; Milewski MI; Macek M; Cutting GR
    Am J Hum Genet; 2000 May; 66(5):1485-95. PubMed ID: 10762539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical implications of cystic fibrosis transmembrane conductance regulator mutations.
    Mickle JE; Cutting GR
    Clin Chest Med; 1998 Sep; 19(3):443-58, v. PubMed ID: 9759548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying Cystic Fibrosis Transmembrane Conductance Regulator Genetics and CFTR2 Data to Facilitate Diagnoses.
    Sosnay PR; Salinas DB; White TB; Ren CL; Farrell PM; Raraigh KS; Girodon E; Castellani C
    J Pediatr; 2017 Feb; 181S():S27-S32.e1. PubMed ID: 28129809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding screen for cystic fibrosis transmembrane conductance regulator correctors finds new chemical matter and yields insights into cystic fibrosis therapeutic strategy.
    Hall JD; Wang H; Byrnes LJ; Shanker S; Wang K; Efremov IV; Chong PA; Forman-Kay JD; Aulabaugh AE
    Protein Sci; 2016 Feb; 25(2):360-73. PubMed ID: 26444971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the CFTR gene in Iranian cystic fibrosis patients: identification of eight novel mutations.
    Alibakhshi R; Kianishirazi R; Cassiman JJ; Zamani M; Cuppens H
    J Cyst Fibros; 2008 Mar; 7(2):102-9. PubMed ID: 17662673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotype-optimized sequence ensembles substantially improve prediction of disease-causing mutation in cystic fibrosis.
    Masica DL; Sosnay PR; Cutting GR; Karchin R
    Hum Mutat; 2012 Aug; 33(8):1267-74. PubMed ID: 22573477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cystic fibrosis: a worldwide analysis of CFTR mutations--correlation with incidence data and application to screening.
    Bobadilla JL; Macek M; Fine JP; Farrell PM
    Hum Mutat; 2002 Jun; 19(6):575-606. PubMed ID: 12007216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined analysis of the cystic fibrosis transmembrane conductance regulator: implications for structure and disease models.
    Chen JM; Cutler C; Jacques C; Boeuf G; Denamur E; Lecointre G; Mercier B; Cramb G; Férec C
    Mol Biol Evol; 2001 Sep; 18(9):1771-88. PubMed ID: 11504857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis.
    Thibodeau PH; Richardson JM; Wang W; Millen L; Watson J; Mendoza JL; Du K; Fischman S; Senderowitz H; Lukacs GL; Kirk K; Thomas PJ
    J Biol Chem; 2010 Nov; 285(46):35825-35. PubMed ID: 20667826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cystic fibrosis transmembrane conductance regulator (CFTR) gene: mutations and clinical phenotypes].
    Schwartz M
    Ugeskr Laeger; 2003 Feb; 165(9):912-6. PubMed ID: 12661515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maturation and function of cystic fibrosis transmembrane conductance regulator variants bearing mutations in putative nucleotide-binding domains 1 and 2.
    Gregory RJ; Rich DP; Cheng SH; Souza DW; Paul S; Manavalan P; Anderson MP; Welsh MJ; Smith AE
    Mol Cell Biol; 1991 Aug; 11(8):3886-93. PubMed ID: 1712898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentiators (specific therapies for class III and IV mutations) for cystic fibrosis.
    Patel S; Sinha IP; Dwan K; Echevarria C; Schechter M; Southern KW
    Cochrane Database Syst Rev; 2015 Mar; (3):CD009841. PubMed ID: 25811419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics of Cystic Fibrosis: Clinical Implications.
    Egan ME
    Clin Chest Med; 2016 Mar; 37(1):9-16. PubMed ID: 26857764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary and functional divergence between the cystic fibrosis transmembrane conductance regulator and related ATP-binding cassette transporters.
    Jordan IK; Kota KC; Cui G; Thompson CH; McCarty NA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18865-70. PubMed ID: 19020075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation.
    Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE
    Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.