BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22880062)

  • 1. Genome-wide detection of spontaneous chromosomal rearrangements in bacteria.
    Sun S; Ke R; Hughes D; Nilsson M; Andersson DI
    PLoS One; 2012; 7(8):e42639. PubMed ID: 22880062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genome of Salmonella enterica serovar gallinarum: distinct insertions/deletions and rare rearrangements.
    Wu KY; Liu GR; Liu WQ; Wang AQ; Zhan S; Sanderson KE; Johnston RN; Liu SL
    J Bacteriol; 2005 Jul; 187(14):4720-7. PubMed ID: 15995186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli.
    Raeside C; Gaffé J; Deatherage DE; Tenaillon O; Briska AM; Ptashkin RN; Cruveiller S; Médigue C; Lenski RE; Barrick JE; Schneider D
    mBio; 2014 Sep; 5(5):e01377-14. PubMed ID: 25205090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tandem inversion duplication in Salmonella enterica: selection drives unstable precursors to final mutation types.
    Kugelberg E; Kofoid E; Andersson DI; Lu Y; Mellor J; Roth FP; Roth JR
    Genetics; 2010 May; 185(1):65-80. PubMed ID: 20215473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of multi-gene segments in the mutS-rpoS intergenic region of Salmonella enterica serovar Typhimurium LT2.
    Kotewicz ML; Li B; Levy DD; LeClerc JE; Shifflet AW; Cebula TA
    Microbiology (Reading); 2002 Aug; 148(Pt 8):2531-2540. PubMed ID: 12177346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes.
    Romero D; Martínez-Salazar J; Ortiz E; Rodríguez C; Valencia-Morales E
    Res Microbiol; 1999; 150(9-10):735-43. PubMed ID: 10673011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome rearrangements can make and break small RNA genes.
    Raghavan R; Kacharia FR; Millar JA; Sislak CD; Ochman H
    Genome Biol Evol; 2015 Jan; 7(2):557-66. PubMed ID: 25601101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SNAP hypothesis: Chromosomal rearrangements could emerge from positive Selection during Niche Adaptation.
    Brandis G; Hughes D
    PLoS Genet; 2020 Mar; 16(3):e1008615. PubMed ID: 32130223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Units of plasticity in bacterial genomes: new insight from the comparative genomics of two bacteria interacting with invertebrates, Photorhabdus and Xenorhabdus.
    Ogier JC; Calteau A; Forst S; Goodrich-Blair H; Roche D; Rouy Z; Suen G; Zumbihl R; Givaudan A; Tailliez P; Médigue C; Gaudriault S
    BMC Genomics; 2010 Oct; 11():568. PubMed ID: 20950463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rearrangement analysis of multiple bacterial genomes.
    Noureen M; Tada I; Kawashima T; Arita M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):631. PubMed ID: 31881830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic Approaches for Understanding the Characteristics of
    Kim S; Kim E; Park S; Hahn TW; Yoon H
    J Microbiol Biotechnol; 2017 Nov; 27(11):1983-1993. PubMed ID: 29032651
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes.
    Hughes D
    Genome Biol; 2000; 1(6):REVIEWS0006. PubMed ID: 11380986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar typhi.
    Alokam S; Liu SL; Said K; Sanderson KE
    J Bacteriol; 2002 Nov; 184(22):6190-7. PubMed ID: 12399489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing.
    Skovgaard O; Bak M; Løbner-Olesen A; Tommerup N
    Genome Res; 2011 Aug; 21(8):1388-93. PubMed ID: 21555365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome rearrangements in maize induced by alternative transposition of reversed ac/ds termini.
    Yu C; Zhang J; Peterson T
    Genetics; 2011 May; 188(1):59-67. PubMed ID: 21339479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rearrangements in the genome of the bacterium Salmonella typhi.
    Liu SL; Sanderson KE
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1018-22. PubMed ID: 7862625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The History of Bordetella pertussis Genome Evolution Includes Structural Rearrangement.
    Weigand MR; Peng Y; Loparev V; Batra D; Bowden KE; Burroughs M; Cassiday PK; Davis JK; Johnson T; Juieng P; Knipe K; Mathis MH; Pruitt AM; Rowe L; Sheth M; Tondella ML; Williams MM
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28167525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection-driven gene loss in bacteria.
    Koskiniemi S; Sun S; Berg OG; Andersson DI
    PLoS Genet; 2012 Jun; 8(6):e1002787. PubMed ID: 22761588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise excision and self-integration of a composite transposon as a model for spontaneous large-scale chromosome inversion/deletion of the Staphylococcus haemolyticus clinical strain JCSC1435.
    Watanabe S; Ito T; Morimoto Y; Takeuchi F; Hiramatsu K
    J Bacteriol; 2007 Apr; 189(7):2921-5. PubMed ID: 17237177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the Escherichia coli K-12 genome with sampled genomes of a Klebsiella pneumoniae and three salmonella enterica serovars, Typhimurium, Typhi and Paratyphi.
    McClelland M; Florea L; Sanderson K; Clifton SW; Parkhill J; Churcher C; Dougan G; Wilson RK; Miller W
    Nucleic Acids Res; 2000 Dec; 28(24):4974-86. PubMed ID: 11121489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.