These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22880965)

  • 1. Association between competition and obligate mutualism in a chemostat.
    El Hajji M; Harmand J; Chaker H; Lobry C
    J Biol Dyn; 2009 Nov; 3(6):635-47. PubMed ID: 22880965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat.
    Sari T; El Hajji M; Harmand J
    Math Biosci Eng; 2012 Jul; 9(3):627-45. PubMed ID: 22881029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process.
    El Hajji M; Mazenc F; Harmand J
    Math Biosci Eng; 2010 Jul; 7(3):641-56. PubMed ID: 20578790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition in chemostat-type equations with two habitats.
    Nakaoka S; Takeuchi Y
    Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates.
    Castella F; Madec S
    J Math Biol; 2014 Jan; 68(1-2):377-415. PubMed ID: 23263380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How flocculation can explain coexistence in the chemostat.
    Haegeman B; Rapaport A
    J Biol Dyn; 2008 Jan; 2(1):1-13. PubMed ID: 22876841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed feedback control for a chemostat model.
    Tagashira O; Hara T
    Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden.
    Kang Y; Clark R; Makiyama M; Fewell J
    J Theor Biol; 2011 Nov; 289():116-27. PubMed ID: 21903102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Biological mutualism, concepts and models].
    Perru O
    Hist Philos Life Sci; 2011; 33(2):223-48. PubMed ID: 22288336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global stability of the coexistence equilibrium for a general class of models of facultative mutualism.
    Maxin D; Georgescu P; Sega L; Berec L
    J Biol Dyn; 2017 Dec; 11(1):339-364. PubMed ID: 28653581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global dynamics of the chemostat with different removal rates and variable yields.
    Sari T; Mazenc F
    Math Biosci Eng; 2011 Jul; 8(3):827-40. PubMed ID: 21675813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bifurcation analysis of a differential equations model for mutualism.
    Graves WG; Peckham B; Pastor J
    Bull Math Biol; 2006 Nov; 68(8):1851-72. PubMed ID: 16937233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bistability in a system of two species interacting through mutualism as well as competition: Chemostat vs. Lotka-Volterra equations.
    Vet S; de Buyl S; Faust K; Danckaert J; Gonze D; Gelens L
    PLoS One; 2018; 13(6):e0197462. PubMed ID: 29874266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple unforced oscillatory growth model in the chemostat.
    Lemesle V; Gouzé JL
    Bull Math Biol; 2008 Feb; 70(2):344-57. PubMed ID: 17912591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A periodic Droop model for two species competition in a chemostat.
    White MC; Zhao XQ
    Bull Math Biol; 2009 Jan; 71(1):145-61. PubMed ID: 18825462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamic model describing heterotrophic culture of Chlorella and its stability analysis.
    Zhang Y; Ma W; Yan H; Takeuchi Y
    Math Biosci Eng; 2011 Oct; 8(4):1117-33. PubMed ID: 21936603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronized reproduction promotes species coexistence through reproductive facilitation.
    Chen YY; Hsu SB
    J Theor Biol; 2011 Apr; 274(1):136-44. PubMed ID: 21241712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexistence in the chemostat as a result of metabolic by-products.
    Hesseler J; Schmidt JK; Reichl U; Flockerzi D
    J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition in a turbidostat for an inhibitory nutrient.
    Li B
    J Biol Dyn; 2008 Apr; 2(2):208-20. PubMed ID: 22880702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allelopathy of plasmid-bearing and plasmid-free organisms competing for two complementary resources in a chemostat.
    Bhattacharyya J; Smith HL; Pal S
    J Biol Dyn; 2012; 6():628-44. PubMed ID: 22873609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.