These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22881029)

  • 1. The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat.
    Sari T; El Hajji M; Harmand J
    Math Biosci Eng; 2012 Jul; 9(3):627-45. PubMed ID: 22881029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical study of a syntrophic relationship of a model of anaerobic digestion process.
    El Hajji M; Mazenc F; Harmand J
    Math Biosci Eng; 2010 Jul; 7(3):641-56. PubMed ID: 20578790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association between competition and obligate mutualism in a chemostat.
    El Hajji M; Harmand J; Chaker H; Lobry C
    J Biol Dyn; 2009 Nov; 3(6):635-47. PubMed ID: 22880965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of a model for the effects of an external toxin on anaerobic digestion.
    Weedermann M
    Math Biosci Eng; 2012 Apr; 9(2):445-59. PubMed ID: 22901073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed feedback control for a chemostat model.
    Tagashira O; Hara T
    Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic model describing heterotrophic culture of Chlorella and its stability analysis.
    Zhang Y; Ma W; Yan H; Takeuchi Y
    Math Biosci Eng; 2011 Oct; 8(4):1117-33. PubMed ID: 21936603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary cooperation between two syntrophic bacteria in pesticide degradation.
    Katsuyama C; Nakaoka S; Takeuchi Y; Tago K; Hayatsu M; Kato K
    J Theor Biol; 2009 Feb; 256(4):644-54. PubMed ID: 19038271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition.
    Weedermann M; Seo G; Wolkowicz GS
    J Biol Dyn; 2013; 7(1):59-85. PubMed ID: 23336708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of a syntrophic relationship between two microbial species in a chemostat including maintenance.
    Sari T; Harmand J
    Math Biosci; 2016 May; 275():1-9. PubMed ID: 26926240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling microbial diversity in anaerobic digestion through an extended ADM1 model.
    Ramirez I; Volcke EI; Rajinikanth R; Steyer JP
    Water Res; 2009 Jun; 43(11):2787-800. PubMed ID: 19427012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation.
    Tang Y; Shigematsu T; Morimura S; Kida K
    J Biosci Bioeng; 2005 Feb; 99(2):150-64. PubMed ID: 16233772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How flocculation can explain coexistence in the chemostat.
    Haegeman B; Rapaport A
    J Biol Dyn; 2008 Jan; 2(1):1-13. PubMed ID: 22876841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Syntrophic acetate oxidation in two-phase (acid-methane) anaerobic digesters.
    Shimada T; Morgenroth E; Tandukar M; Pavlostathis SG; Smith A; Raskin L; Kilian RE
    Water Sci Technol; 2011; 64(9):1812-20. PubMed ID: 22020473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback control for chemostat models.
    De Leenheer P; Smith H
    J Math Biol; 2003 Jan; 46(1):48-70. PubMed ID: 12525935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodology for a quantitative interpretation of DGGE with the help of mathematical modelling: application in biohydrogen production.
    Tapia E; Donoso-Bravo A; Cabrol L; Alves M; Pereira A; Rapaport A; Ruiz-Filippi G
    Water Sci Technol; 2014; 69(3):511-7. PubMed ID: 24552721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge.
    Shin SG; Lee S; Lee C; Hwang K; Hwang S
    Bioresour Technol; 2010 Dec; 101(24):9461-70. PubMed ID: 20705457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates.
    Castella F; Madec S
    J Math Biol; 2014 Jan; 68(1-2):377-415. PubMed ID: 23263380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage and bacteria in a flow reactor.
    Jones DA; Smith HL
    Bull Math Biol; 2011 Oct; 73(10):2357-83. PubMed ID: 21221829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a three bacteria mixed culture in a chemostat: evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration.
    Schmidt JK; König B; Reichl U
    Biotechnol Bioeng; 2007 Mar; 96(4):738-56. PubMed ID: 16937400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of syntrophic microbial communities in high-rate methanogenic bioreactors.
    Stams AJ; Sousa DZ; Kleerebezem R; Plugge CM
    Water Sci Technol; 2012; 66(2):352-62. PubMed ID: 22699340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.