These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 22881084)
1. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers. Kang D; Kwon JY; Cho H; Sim JH; Hwang HS; Kim CS; Kim YJ; Ruoff RS; Shin HS ACS Nano; 2012 Sep; 6(9):7763-9. PubMed ID: 22881084 [TBL] [Abstract][Full Text] [Related]
2. Graphene as a long-term metal oxidation barrier: worse than nothing. Schriver M; Regan W; Gannett WJ; Zaniewski AM; Crommie MF; Zettl A ACS Nano; 2013 Jul; 7(7):5763-8. PubMed ID: 23755733 [TBL] [Abstract][Full Text] [Related]
3. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. Yan Z; Lin J; Peng Z; Sun Z; Zhu Y; Li L; Xiang C; Samuel EL; Kittrell C; Tour JM ACS Nano; 2012 Oct; 6(10):9110-7. PubMed ID: 22966902 [TBL] [Abstract][Full Text] [Related]
4. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. Chen S; Brown L; Levendorf M; Cai W; Ju SY; Edgeworth J; Li X; Magnuson CW; Velamakanni A; Piner RD; Kang J; Park J; Ruoff RS ACS Nano; 2011 Feb; 5(2):1321-7. PubMed ID: 21275384 [TBL] [Abstract][Full Text] [Related]
5. Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils. Wu Y; Chou H; Ji H; Wu Q; Chen S; Jiang W; Hao Y; Kang J; Ren Y; Piner RD; Ruoff RS ACS Nano; 2012 Sep; 6(9):7731-8. PubMed ID: 22946844 [TBL] [Abstract][Full Text] [Related]
6. Atomic-scale investigation of graphene grown on Cu foil and the effects of thermal annealing. Cho J; Gao L; Tian J; Cao H; Wu W; Yu Q; Yitamben EN; Fisher B; Guest JR; Chen YP; Guisinger NP ACS Nano; 2011 May; 5(5):3607-13. PubMed ID: 21500843 [TBL] [Abstract][Full Text] [Related]
7. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. Sudibya HG; He Q; Zhang H; Chen P ACS Nano; 2011 Mar; 5(3):1990-4. PubMed ID: 21338084 [TBL] [Abstract][Full Text] [Related]
8. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides. Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325 [TBL] [Abstract][Full Text] [Related]
9. Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum. Mattson EC; Pu H; Cui S; Schofield MA; Rhim S; Lu G; Nasse MJ; Ruoff RS; Weinert M; Gajdardziska-Josifovska M; Chen J; Hirschmugl CJ ACS Nano; 2011 Dec; 5(12):9710-7. PubMed ID: 22098501 [TBL] [Abstract][Full Text] [Related]
10. A facile route to recover intrinsic graphene over large scale. Shin DW; Lee HM; Yu SM; Lim KS; Jung JH; Kim MK; Kim SW; Han JH; Ruoff RS; Yoo JB ACS Nano; 2012 Sep; 6(9):7781-8. PubMed ID: 22928753 [TBL] [Abstract][Full Text] [Related]
11. Passivation of metal surface states: microscopic origin for uniform monolayer graphene by low temperature chemical vapor deposition. Jeon I; Yang H; Lee SH; Heo J; Seo DH; Shin J; Chung UI; Kim ZG; Chung HJ; Seo S ACS Nano; 2011 Mar; 5(3):1915-20. PubMed ID: 21309604 [TBL] [Abstract][Full Text] [Related]
12. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. Zhang Y; Gao T; Gao Y; Xie S; Ji Q; Yan K; Peng H; Liu Z ACS Nano; 2011 May; 5(5):4014-22. PubMed ID: 21500831 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Jabeen H; Chandra V; Jung S; Lee JW; Kim KS; Kim SB Nanoscale; 2011 Sep; 3(9):3583-5. PubMed ID: 21814702 [TBL] [Abstract][Full Text] [Related]
14. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. Pan S; Aksay IA ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen-doped graphene and its iron-based composite as efficient electrocatalysts for oxygen reduction reaction. Parvez K; Yang S; Hernandez Y; Winter A; Turchanin A; Feng X; Müllen K ACS Nano; 2012 Nov; 6(11):9541-50. PubMed ID: 23050839 [TBL] [Abstract][Full Text] [Related]
16. Stable Cu₂O nanocrystals grown on functionalized graphene sheets and room temperature H₂S gas sensing with ultrahigh sensitivity. Zhou L; Shen F; Tian X; Wang D; Zhang T; Chen W Nanoscale; 2013 Feb; 5(4):1564-9. PubMed ID: 23325161 [TBL] [Abstract][Full Text] [Related]
17. Facile and straightforward synthesis of superparamagnetic reduced graphene oxide-Fe3O4 hybrid composite by a solvothermal reaction. Liu YW; Guan MX; Feng L; Deng SL; Bao JF; Xie SY; Chen Z; Huang RB; Zheng LS Nanotechnology; 2013 Jan; 24(2):025604. PubMed ID: 23220906 [TBL] [Abstract][Full Text] [Related]
18. A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Tran PD; Batabyal SK; Pramana SS; Barber J; Wong LH; Loo SC Nanoscale; 2012 Jul; 4(13):3875-8. PubMed ID: 22653156 [TBL] [Abstract][Full Text] [Related]
19. Remote catalyzation for direct formation of graphene layers on oxides. Teng PY; Lu CC; Akiyama-Hasegawa K; Lin YC; Yeh CH; Suenaga K; Chiu PW Nano Lett; 2012 Mar; 12(3):1379-84. PubMed ID: 22332771 [TBL] [Abstract][Full Text] [Related]