These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22881277)

  • 1. Reproduction numbers for infections with free-living pathogens growing in the environment.
    Bani-Yaghoub M; Gautam R; Shuai Z; van den Driessche P; Ivanek R
    J Biol Dyn; 2012; 6():923-40. PubMed ID: 22881277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the probability of an extinction or major outbreak for an environmentally transmitted infectious disease.
    Lahodny GE; Gautam R; Ivanek R
    J Biol Dyn; 2015; 9 Suppl 1():128-55. PubMed ID: 25198247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global dynamics of cholera models with differential infectivity.
    Shuai Z; van den Driessche P
    Math Biosci; 2011 Dec; 234(2):118-26. PubMed ID: 22001141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control Strategies in Multigroup Models: The Case of the Star Network Topology.
    Saldaña F; Barradas I
    Bull Math Biol; 2018 Nov; 80(11):2978-3001. PubMed ID: 30242634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling cholera dynamics at multiple scales: environmental evolution, between-host transmission, and within-host interaction.
    Ratchford C; Wang J
    Math Biosci Eng; 2019 Jan; 16(2):782-812. PubMed ID: 30861666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of cholera epidemics with bacterial growth and spatial movement.
    Wang X; Wang J
    J Biol Dyn; 2015; 9 Suppl 1():233-61. PubMed ID: 25363286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From the bench to modeling--R0 at the interface between empirical and theoretical approaches in epidemiology of environmentally transmitted infectious diseases.
    Ivanek R; Lahodny G
    Prev Vet Med; 2015 Feb; 118(2-3):196-206. PubMed ID: 25441048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of an age-of-infection cholera model.
    Brauer F; Shuai Z; van den Driessche P
    Math Biosci Eng; 2013; 10(5-6):1335-49. PubMed ID: 24245619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global stability of an age-structured cholera model.
    Yang J; Qiu Z; Li XZ
    Math Biosci Eng; 2014 Jun; 11(3):641-65. PubMed ID: 24506555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling and control of cholera on networks with a common water source.
    Shuai Z; van den Driessche P
    J Biol Dyn; 2015; 9 Suppl 1():90-103. PubMed ID: 25140600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sapronosis: a distinctive type of infectious agent.
    Kuris AM; Lafferty KD; Sokolow SH
    Trends Parasitol; 2014 Aug; 30(8):386-93. PubMed ID: 25028088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157:H7 in a dairy herd.
    Gautam R; Bani-Yaghoub M; Neill WH; Döpfer D; Kaspar C; Ivanek R
    Prev Vet Med; 2011 Oct; 102(1):10-21. PubMed ID: 21764472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment.
    Shu H; Ma Z; Wang XS
    J Math Biol; 2021 Sep; 83(4):41. PubMed ID: 34559311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the global stability of a generalized cholera epidemiological model.
    Cheng Y; Wang J; Yang X
    J Biol Dyn; 2012; 6():1088-104. PubMed ID: 23110346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.
    Eisenberg MC; Robertson SL; Tien JH
    J Theor Biol; 2013 May; 324():84-102. PubMed ID: 23333764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cholera model in a patchy environment with water and human movement.
    Eisenberg MC; Shuai Z; Tien JH; van den Driessche P
    Math Biosci; 2013 Nov; 246(1):105-12. PubMed ID: 23958383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling.
    Yang HM
    Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global stability for cholera epidemic models.
    Tian JP; Wang J
    Math Biosci; 2011 Jul; 232(1):31-41. PubMed ID: 21513717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The basic reproduction number for complex disease systems: defining R(0) for tick-borne infections.
    Hartemink NA; Randolph SE; Davis SA; Heesterbeek JA
    Am Nat; 2008 Jun; 171(6):743-54. PubMed ID: 18462128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salmonella Dublin infection in young dairy calves: transmission parameters estimated from field data and an SIR-model.
    Nielsen LR; van den Borne B; van Schaik G
    Prev Vet Med; 2007 Apr; 79(1):46-58. PubMed ID: 17175050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.