BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 22882077)

  • 1. Signal amplification of graphene oxide combining with restriction endonuclease for site-specific determination of DNA methylation and assay of methyltransferase activity.
    Li W; Wu P; Zhang H; Cai C
    Anal Chem; 2012 Sep; 84(17):7583-90. PubMed ID: 22882077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free fluorescence detection of DNA methylation and methyltransferase activity based on restriction endonuclease HpaII and exonuclease III.
    Gao C; Li H; Liu Y; Wei W; Zhang Y; Liu S
    Analyst; 2014 Dec; 139(24):6387-92. PubMed ID: 25343162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive electrochemical immunoassay for DNA methyltransferase activity and inhibitor screening based on methyl binding domain protein of MeCP2 and enzymatic signal amplification.
    Yin H; Zhou Y; Xu Z; Wang M; Ai S
    Biosens Bioelectron; 2013 Nov; 49():39-45. PubMed ID: 23708816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence quenching of graphene oxide combined with the site-specific cleavage of restriction endonuclease for deoxyribonucleic acid demethylase activity assay.
    Ji L; Qian Y; Wu P; Zhang H; Cai C
    Anal Chim Acta; 2015 Apr; 869():74-80. PubMed ID: 25818142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrogenerated chemiluminescence biosensing method for the detection of DNA methylation and assay of the methyltransferase activity.
    Li Y; Huang C; Zheng J; Qi H
    Biosens Bioelectron; 2012; 38(1):407-10. PubMed ID: 22633940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA-based hybridization chain reaction amplification for assaying the effect of environmental phenolic hormone on DNA methyltransferase activity.
    Xu Z; Yin H; Han Y; Zhou Y; Ai S
    Anal Chim Acta; 2014 Jun; 829():9-14. PubMed ID: 24856396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical determination of the activity of DNA methyltransferase based on the methyl binding domain protein and a customized modular detector.
    Lu L; Liu B; Leng J; Ma X
    Mikrochim Acta; 2019 Mar; 186(4):229. PubMed ID: 30848391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive signal-on electrochemical assay for MTase activity using AuNPs amplification.
    He X; Su J; Wang Y; Wang K; Ni X; Chen Z
    Biosens Bioelectron; 2011 Oct; 28(1):298-303. PubMed ID: 21820304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation.
    Xue Q; Lv Y; Xu S; Zhang Y; Wang L; Li R; Yue Q; Li H; Gu X; Zhang S; Liu J
    Biosens Bioelectron; 2015 Apr; 66():547-53. PubMed ID: 25506903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis of GO/AgNPs/luminol composites with electrochemiluminescence activity for sensitive detection of DNA methyltransferase activity.
    Zhao HF; Liang RP; Wang JW; Qiu JD
    Biosens Bioelectron; 2015 Jan; 63():458-464. PubMed ID: 25129507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive methyltransferase activity assay and inhibitor screening based on fluorescence quenching of graphene oxide integrated with the site-specific cleavage of restriction endonuclease.
    Ji L; Cai Z; Qian Y; Wu P; Zhang H; Cai C
    Chem Commun (Camb); 2014 Sep; 50(73):10691-4. PubMed ID: 25077742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive electrochemical methyltransferase activity assay.
    Deng H; Yang X; Yeo SP; Gao Z
    Anal Chem; 2014 Feb; 86(4):2117-23. PubMed ID: 24471506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive fluorescence assay of DNA methyltransferase activity via methylation-sensitive cleavage coupled with nicking enzyme-assisted signal amplification.
    Zhao Y; Chen F; Wu Y; Dong Y; Fan C
    Biosens Bioelectron; 2013 Apr; 42():56-61. PubMed ID: 23202331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.
    Wei W; Gao C; Xiong Y; Zhang Y; Liu S; Pu Y
    Talanta; 2015 Jan; 131():342-7. PubMed ID: 25281112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive and selective electrochemical identification of hepatitis C virus genotype 1b based on specific endonuclease combined with gold nanoparticles signal amplification.
    Liu S; Wu P; Li W; Zhang H; Cai C
    Anal Chem; 2011 Jun; 83(12):4752-8. PubMed ID: 21553883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical immunosensing platform for DNA methyltransferase activity analysis and inhibitor screening.
    Wang M; Xu Z; Chen L; Yin H; Ai S
    Anal Chem; 2012 Nov; 84(21):9072-8. PubMed ID: 23030620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical strategy for sensing DNA methylation and DNA methyltransferase activity.
    Wang GL; Zhou LY; Luo HQ; Li NB
    Anal Chim Acta; 2013 Mar; 768():76-81. PubMed ID: 23473252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sensitive strategy for the fluorescence detection of DNA methyltransferase activity based on the graphene oxide platform and T7 exonuclease-assisted cyclic signal amplification.
    Ma Y; Chen L; Zhang L; Liao S; Zhao J
    Analyst; 2015 Jun; 140(12):4076-82. PubMed ID: 25882858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical determination of the activity of M.SssI methyltransferase, and a method for inhibitor screening.
    Liu X; Wei C; Luo J; Wu Y; Guo X; Ying Y; Wen Y; Yang H
    Mikrochim Acta; 2018 Oct; 185(11):498. PubMed ID: 30291458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening.
    Jing X; Cao X; Wang L; Lan T; Li Y; Xie G
    Biosens Bioelectron; 2014 Aug; 58():40-7. PubMed ID: 24613968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.