These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 22882513)

  • 21. Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory.
    Pellegrino J; Wright S; Ranvill J; Amy G
    Water Sci Technol; 2005; 51(6-7):85-92. PubMed ID: 16003965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diffusion layer caused by local ionic transmembrane fluxes.
    Marhl M; Brumen M; Glaser R; Heinrich R
    Pflugers Arch; 1996; 431(6 Suppl 2):R259-60. PubMed ID: 8739363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PNP equations with steric effects: a model of ion flow through channels.
    Horng TL; Lin TC; Liu C; Eisenberg B
    J Phys Chem B; 2012 Sep; 116(37):11422-41. PubMed ID: 22900604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concentration polarization phenomenon during the nanofiltration of multi-ionic solutions: influence of the filtrated solution and operating conditions.
    Déon S; Dutournié P; Fievet P; Limousy L; Bourseau P
    Water Res; 2013 May; 47(7):2260-72. PubMed ID: 23434044
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Osmo-diffusive transport through microbial cellulose membrane: the computer model simulation in 3D graphic of the dissipation energy for various values of membrane permeability parameters].
    Slezak A; Grzegorczyn S; Prochazka B
    Polim Med; 2007; 37(3):47-57. PubMed ID: 18251204
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peritoneal blood flow and peritoneal transfer parameters during dialysis with administration of drugs.
    Grzegorzewska AE; Antoniewicz K
    Adv Perit Dial; 1995; 11():28-32. PubMed ID: 8534723
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Net fluid absorption under membrane transport models of peritoneal dialysis.
    Vonesh EF; Rippe B
    Blood Purif; 1992; 10(3-4):209-26. PubMed ID: 1308685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Treatment of landfill leachates by nanofiltration.
    Chaudhari LB; Murthy ZV
    J Environ Manage; 2010 May; 91(5):1209-17. PubMed ID: 20149518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of anaesthesia on fluid and solute transport in a C57BL6 mouse model of peritoneal dialysis.
    Shin SK; Kamerath CD; Gilson JF; Leypoldt JK
    Nephrol Dial Transplant; 2006 Oct; 21(10):2874-80. PubMed ID: 16877489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mass transfer in the cornea. I. Interacting ion flows in an arbitrarily charged membrane.
    Friedman MH
    Biophys J; 1970 Nov; 10(11):1013-28. PubMed ID: 5471695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parameter estimation in six numeric models of transperitoneal transport of glucose.
    Graff J; Fugleberg S; Joffe P; Fogh-Andersen N
    ASAIO J; 1994; 40(4):1005-11. PubMed ID: 7858319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Evolution and physical principles of convection-based dialysis treatment].
    David S
    G Ital Nefrol; 2012; 29 Suppl 55():S3-11. PubMed ID: 22723138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of Peritoneal Acid-Base Kinetics During Peritoneal Dialysis: A Mathematical Model Study.
    Wolf MB
    ASAIO J; 2021 Jul; 67(7):809-816. PubMed ID: 33181546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores.
    Tajparast M; Virdi G; Glavinović MI
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2138-53. PubMed ID: 26079796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane.
    Bath BD; White HS; Scott ER
    Anal Chem; 2000 Feb; 72(3):433-42. PubMed ID: 10695125
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis.
    Langsdorf LJ; Zydney AL
    J Biomed Mater Res; 1994 May; 28(5):573-82. PubMed ID: 7517941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the competitive uptake and transport of ions through differentiated root tissues.
    Foster KJ; Miklavcic SJ
    J Theor Biol; 2014 Jan; 340():1-10. PubMed ID: 24036203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions.
    Levitt DG
    Biophys J; 1978 May; 22(2):209-19. PubMed ID: 656542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients.
    Waniewski J; Antosiewicz S; Baczynski D; Poleszczuk J; Pietribiasi M; Lindholm B; Wankowicz Z
    Comput Math Methods Med; 2016; 2016():8204294. PubMed ID: 26989432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.
    Schulthess CP; Ndu U
    PLoS One; 2017; 12(5):e0176743. PubMed ID: 28464020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.