These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
540 related articles for article (PubMed ID: 22882522)
1. Cleaning and modification of intraorally contaminated titanium discs with calcium phosphate powder abrasive treatment. Tastepe CS; Liu Y; Visscher CM; Wismeijer D Clin Oral Implants Res; 2013 Nov; 24(11):1238-46. PubMed ID: 22882522 [TBL] [Abstract][Full Text] [Related]
2. Re-establishment of Biocompatibility of the In Vitro Contaminated Titanium Surface Using Osteoconductive Powders With Air-Abrasive Treatment. Tastepe CS; Lin X; Donnet M; Doulabi BZ; Wismeijer D; Liu Y J Oral Implantol; 2018 Apr; 44(2):94-101. PubMed ID: 29303415 [TBL] [Abstract][Full Text] [Related]
3. Cleaning effect of osteoconductive powder abrasive treatment on explanted human implants and biofilm-coated titanium discs. Tastepe CS; Lin X; Werner A; Donnet M; Wismeijer D; Liu Y Clin Exp Dent Res; 2018 Feb; 4(1):25-34. PubMed ID: 29744212 [TBL] [Abstract][Full Text] [Related]
5. Air powder abrasive treatment as an implant surface cleaning method: a literature review. Tastepe CS; van Waas R; Liu Y; Wismeijer D Int J Oral Maxillofac Implants; 2012; 27(6):1461-73. PubMed ID: 23189298 [TBL] [Abstract][Full Text] [Related]
6. Effectivity of air-abrasive powder based on glycine and tricalcium phosphate in removal of initial biofilm on titanium and zirconium oxide surfaces in an ex vivo model. John G; Becker J; Schwarz F Clin Oral Investig; 2016 May; 20(4):711-9. PubMed ID: 26319979 [TBL] [Abstract][Full Text] [Related]
7. Comparison of decontamination efficacy of two electrolyte cleaning methods to diode laser, plasma, and air-abrasive devices. Zipprich H; Weigl P; Di Gianfilippo R; Steigmann L; Henrich D; Wang HL; Schlee M; Ratka C Clin Oral Investig; 2022 Jun; 26(6):4549-4558. PubMed ID: 35322316 [TBL] [Abstract][Full Text] [Related]
8. Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Matsubara VH; Leong BW; Leong MJL; Lawrence Z; Becker T; Quaranta A Clin Implant Dent Relat Res; 2020 Feb; 22(1):96-104. PubMed ID: 31837107 [TBL] [Abstract][Full Text] [Related]
9. Effects of an air-powder abrasive system on plasma-sprayed titanium implant surfaces: an in vitro evaluation. Parham PL; Cobb CM; French AA; Love JW; Drisko CL; Killoy WJ J Oral Implantol; 1989; 15(2):78-86. PubMed ID: 2640245 [TBL] [Abstract][Full Text] [Related]
10. Novel technique using cold atmospheric plasma coupled with air-polishing for the treatment of titanium discs grown with biofilm: An in-vitro study. Hui WL; Ipe D; Perrotti V; Piattelli A; Fang Z; Ostrikov K; Quaranta A Dent Mater; 2021 Feb; 37(2):359-369. PubMed ID: 33358017 [TBL] [Abstract][Full Text] [Related]
11. In vitro studies on the effect of cleaning methods on different implant surfaces. Augthun M; Tinschert J; Huber A J Periodontol; 1998 Aug; 69(8):857-64. PubMed ID: 9736367 [TBL] [Abstract][Full Text] [Related]
12. Cold atmospheric plasma coupled with air abrasion in liquid medium for the treatment of peri-implantitis model grown with a complex human biofilm: an in vitro study. Hui WL; Perrotti V; Piattelli A; Ostrikov KK; Fang Z; Quaranta A Clin Oral Investig; 2021 Dec; 25(12):6633-6642. PubMed ID: 33893556 [TBL] [Abstract][Full Text] [Related]
13. Effects of Surface Conditions of Titanium Dental Implants on Bacterial Adhesion. Chen CJ; Ding SJ; Chen CC Photomed Laser Surg; 2016 Sep; 34(9):379-88. PubMed ID: 27454339 [TBL] [Abstract][Full Text] [Related]
14. Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma. Matthes R; Duske K; Kebede TG; Pink C; Schlüter R; von Woedtke T; Weltmann KD; Kocher T; Jablonowski L J Clin Periodontol; 2017 Jun; 44(6):672-680. PubMed ID: 28303583 [TBL] [Abstract][Full Text] [Related]
15. A comparison of human dental pulp stem cell activity cultured on sandblasted titanium discs decontaminated with Er:YAG laser and air-powder abrasion: an in vitro study. Kadkhodazadeh M; Amid R; Gilvari Sarshari M; Mojahedi M; Parhizkar A Lasers Med Sci; 2022 Oct; 37(8):3259-3268. PubMed ID: 35907129 [TBL] [Abstract][Full Text] [Related]
16. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Ronay V; Merlini A; Attin T; Schmidlin PR; Sahrmann P Clin Oral Implants Res; 2017 Feb; 28(2):151-155. PubMed ID: 26799360 [TBL] [Abstract][Full Text] [Related]
17. An in vitro comparison of the effects of various air polishing powders on enamel and selected esthetic restorative materials. Barnes CM; Covey D; Watanabe H; Simetich B; Schulte JR; Chen H J Clin Dent; 2014; 25(4):76-87. PubMed ID: 26054183 [TBL] [Abstract][Full Text] [Related]
18. The biofilm removal effect and osteogenic potential on the titanium surface by electrolytic cleaning: An in vitro comparison of electrolytic parameters and five techniques. Zhu Y; Xu Y; Ling Z; Zhao C; Xu A; He F Clin Oral Implants Res; 2024 Apr; 35(4):454-466. PubMed ID: 38345170 [TBL] [Abstract][Full Text] [Related]
19. Parameters That Improve Cleaning Efficiency of Subgingival Air Polishing on Titanium Implant Surfaces: An In Vitro Study. Tastepe CS; Lin X; Donnet M; Wismeijer D; Liu Y J Periodontol; 2017 Apr; 88(4):407-414. PubMed ID: 27885965 [TBL] [Abstract][Full Text] [Related]
20. In vitro studies of factors affecting debridement of dental implants by tricalcium phosphate powder abrasive treatment. Chen IC; Su CY; Tu JJ; Kao DW; Fang HW Sci Rep; 2023 May; 13(1):8271. PubMed ID: 37217571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]