BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 22882584)

  • 1. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco.
    Evans JR; von Caemmerer S
    Plant Cell Environ; 2013 Apr; 36(4):745-56. PubMed ID: 22882584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature responses of mesophyll conductance differ greatly between species.
    von Caemmerer S; Evans JR
    Plant Cell Environ; 2015 Apr; 38(4):629-37. PubMed ID: 25224884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesophyll conductance: internal insights of leaf carbon exchange.
    Griffiths H; Helliker BR
    Plant Cell Environ; 2013 Apr; 36(4):733-5. PubMed ID: 23387473
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves.
    Yamori W; Evans JR; Von Caemmerer S
    Plant Cell Environ; 2010 Mar; 33(3):332-43. PubMed ID: 19895395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods.
    Gu L; Sun Y
    Plant Cell Environ; 2014 May; 37(5):1231-49. PubMed ID: 24237289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness.
    Scafaro AP; Von Caemmerer S; Evans JR; Atwell BJ
    Plant Cell Environ; 2011 Nov; 34(11):1999-2008. PubMed ID: 21752031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum.
    Walker B; Ariza LS; Kaines S; Badger MR; Cousins AB
    Plant Cell Environ; 2013 Dec; 36(12):2108-19. PubMed ID: 23869820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function.
    Tosens T; Niinemets U; Vislap V; Eichelmann H; Castro Díez P
    Plant Cell Environ; 2012 May; 35(5):839-56. PubMed ID: 22070625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO₂ diffusion dynamically at different CO₂ concentrations.
    Tazoe Y; VON Caemmerer S; Estavillo GM; Evans JR
    Plant Cell Environ; 2011 Apr; 34(4):580-91. PubMed ID: 21251018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficiency of C(4) photosynthesis under low light conditions: assumptions and calculations with CO(2) isotope discrimination.
    Ubierna N; Sun W; Cousins AB
    J Exp Bot; 2011 May; 62(9):3119-34. PubMed ID: 21527629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.
    Lautner S; Stummer M; Matyssek R; Fromm J; Grams TE
    Plant Cell Environ; 2014 Jan; 37(1):254-60. PubMed ID: 23763645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial variation in photosynthetic CO(2) carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum × Secale) relates to mesophyll conductance and the Péclet effect.
    Kodama N; Cousins A; Tu KP; Barbour MM
    Plant Cell Environ; 2011 Sep; 34(9):1548-62. PubMed ID: 21707646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light and CO2 do not affect the mesophyll conductance to CO2 diffusion in wheat leaves.
    Tazoe Y; von Caemmerer S; Badger MR; Evans JR
    J Exp Bot; 2009; 60(8):2291-301. PubMed ID: 19255060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthetic and environmental effects on the stable carbon isotopic compositions of anteiso- (3-methyl) and iso- (2-methyl) alkanes in tobacco leaves.
    Grice K; Lu H; Zhou Y; Stuart-Williams H; Farquhar GD
    Phytochemistry; 2008 Nov; 69(16):2807-14. PubMed ID: 18954883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photorespiratory compensation: a driver for biological diversity.
    Sage RF
    Plant Biol (Stuttg); 2013 Jul; 15(4):624-38. PubMed ID: 23656429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesophyll conductance and reaction-diffusion models for CO
    Berghuijs HN; Yin X; Ho QT; Driever SM; Retta MA; Nicolaï BM; Struik PC
    Plant Sci; 2016 Nov; 252():62-75. PubMed ID: 27717479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainties and limitations of using carbon-13 and oxygen-18 leaf isotope exchange to estimate the temperature response of mesophyll CO
    Sonawane BV; Cousins AB
    New Phytol; 2019 Apr; 222(1):122-131. PubMed ID: 30394538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants.
    André MJ
    Biosystems; 2013 Aug; 113(2):115-26. PubMed ID: 23318161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo.
    Bernacchi CJ; Portis AR; Nakano H; von Caemmerer S; Long SP
    Plant Physiol; 2002 Dec; 130(4):1992-8. PubMed ID: 12481082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis.
    Clemente-Moreno MJ; Gago J; Díaz-Vivancos P; Bernal A; Miedes E; Bresta P; Liakopoulos G; Fernie AR; Hernández JA; Flexas J
    Plant J; 2019 Sep; 99(6):1031-1046. PubMed ID: 31215089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.