These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 22882773)
21. Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation. Nold JL; Meyers PA; Worwa CT; Goertz RH; Huseby K; Schauer G; Mammel MC Neonatology; 2007; 92(1):19-25. PubMed ID: 17596733 [TBL] [Abstract][Full Text] [Related]
22. Exogenous surfactant preserves lung function and reduces alveolar Evans blue dye influx in a rat model of ventilation-induced lung injury. Verbrugge SJ; Vazquez de Anda G; Gommers D; Neggers SJ; Sorm V; Böhm SH; Lachmann B Anesthesiology; 1998 Aug; 89(2):467-74. PubMed ID: 9710406 [TBL] [Abstract][Full Text] [Related]
23. Surfactant replacement therapy reduces acute lung injury and collapse induration-related lung remodeling in the bleomycin model. Steffen L; Ruppert C; Hoymann HG; Funke M; Ebener S; Kloth C; Mühlfeld C; Ochs M; Knudsen L; Lopez-Rodriguez E Am J Physiol Lung Cell Mol Physiol; 2017 Aug; 313(2):L313-L327. PubMed ID: 28450283 [TBL] [Abstract][Full Text] [Related]
24. Open lung ventilation preserves the response to delayed surfactant treatment in surfactant-deficient newborn piglets. van Veenendaal MB; van Kaam AH; Haitsma JJ; Lutter R; Lachmann B Crit Care Med; 2006 Nov; 34(11):2827-34. PubMed ID: 17006360 [TBL] [Abstract][Full Text] [Related]
25. Surfactant replacement and open lung concept--comparison of two treatment strategies in an experimental model of neonatal ARDS. Hilgendorff A; Aslan E; Schaible T; Gortner L; Baehner T; Ebsen M; Kreuder J; Ruppert C; Guenther A; Reiss I BMC Pulm Med; 2008 Jul; 8():10. PubMed ID: 18625067 [TBL] [Abstract][Full Text] [Related]
26. The effect of a peptide-containing synthetic lung surfactant on gas exchange and lung mechanics in a rabbit model of surfactant depletion. van Zyl JM; Smith J; Hawtrey A Drug Des Devel Ther; 2013; 7():139-48. PubMed ID: 23507973 [TBL] [Abstract][Full Text] [Related]
27. Combined intervention with N-acetylcysteine and desipramine alleviated silicosis development by regulating the Nrf2/HO-1 and ASMase/ceramide signaling pathways. Tang M; Yang Z; Liu J; Zhang X; Guan L; Liu X; Zeng M Ecotoxicol Environ Saf; 2022 Sep; 242():113914. PubMed ID: 35878501 [TBL] [Abstract][Full Text] [Related]
28. Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury. Schwingshackl A; Teng B; Makena P; Ghosh M; Sinclair SE; Luellen C; Balasz L; Rovnaghi C; Bryan RM; Lloyd EE; Fitzpatrick E; Saravia JS; Cormier SA; Waters CM Crit Care Med; 2014 Nov; 42(11):e692-701. PubMed ID: 25126877 [TBL] [Abstract][Full Text] [Related]
29. Effects of inhaled nitric oxide and surfactant with extracorporeal life support in recovery phase of septic acute lung injury in piglets. Song J; Palmer K; Sun B Pulm Pharmacol Ther; 2010 Apr; 23(2):78-87. PubMed ID: 19878733 [TBL] [Abstract][Full Text] [Related]
30. Hederasaponin C Alleviates Lipopolysaccharide-Induced Acute Lung Injury Han S; Yuan R; Cui Y; He J; Wang QQ; Zhuo Y; Yang S; Gao H Front Immunol; 2022; 13():846384. PubMed ID: 35281058 [TBL] [Abstract][Full Text] [Related]
31. Exogenous surfactant and positive end-expiratory pressure in the treatment of endotoxin-induced lung injury. Lutz CJ; Picone A; Gatto LA; Paskanik A; Landas S; Nieman GF Crit Care Med; 1998 Aug; 26(8):1379-89. PubMed ID: 9710098 [TBL] [Abstract][Full Text] [Related]
33. Suppression of pulmonary group B streptococcal proliferation and translocation by surfactants in ventilated near-term newborn rabbits. Xu Y; Dong Y; Guo X; Sun B Pediatr Res; 2019 Aug; 86(2):208-215. PubMed ID: 31086290 [TBL] [Abstract][Full Text] [Related]
34. Administration of an Acidic Sphingomyelinase (ASMase) Inhibitor, Imipramine, Reduces Hypoglycemia-Induced Hippocampal Neuronal Death. Kho AR; Choi BY; Lee SH; Hong DK; Kang BS; Lee SH; Suh SW Cells; 2022 Feb; 11(4):. PubMed ID: 35203316 [TBL] [Abstract][Full Text] [Related]
35. Exogenous surfactants in a piglet model of acute respiratory distress syndrome. Sood SL; Balaraman V; Finn KC; Britton B; Uyehara CF; Easa D Am J Respir Crit Care Med; 1996 Feb; 153(2):820-8. PubMed ID: 8564138 [TBL] [Abstract][Full Text] [Related]
36. Surfactant lavage decreases systemic interleukin-1 beta production in meconium aspiration syndrome. Wang PW; Jeng MJ; Wang LS; Fang LJ; Soong WJ Pediatr Int; 2010 Jun; 52(3):432-7. PubMed ID: 19919635 [TBL] [Abstract][Full Text] [Related]
37. High frequency oscillatory ventilation versus conventional ventilation in a newborn piglet model with acute lung injury. Fu W; Qin X; You C; Meng Q; Zhao Y; Zhang Y Respir Care; 2013 May; 58(5):824-30. PubMed ID: 23625895 [TBL] [Abstract][Full Text] [Related]
38. Alveolar fluid in acute respiratory distress syndrome promotes fibroblast migration: role of platelet-derived growth factor pathway*. Piednoir P; Quesnel C; Nardelli L; Leçon V; Bouadma L; Lasocki S; Philip I; Mailleux A; Soler P; Crestani B; Dehoux M Crit Care Med; 2012 Jul; 40(7):2041-9. PubMed ID: 22713216 [TBL] [Abstract][Full Text] [Related]
39. Response to exogenous surfactant is different during open lung and conventional ventilation. van Kaam AH; Haitsma JJ; Dik WA; Naber BA; Alblas EH; De Jaegere A; Kok JH; Lachmann B Crit Care Med; 2004 Mar; 32(3):774-80. PubMed ID: 15090961 [TBL] [Abstract][Full Text] [Related]
40. Lavage administration of dilute surfactants after acute lung injury in neonatal piglets. Balaraman V; Meister J; Ku TL; Sood SL; Tam E; Killeen J; Uyehara CF; Egan E; Easa D Am J Respir Crit Care Med; 1998 Jul; 158(1):12-7. PubMed ID: 9655700 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]